M. Victoria Del Pópolo Grzona, Eduardo M. Izurieta, Eduardo López, Marisa N. Pedernera
{"title":"Design of a Renewable Methanol Production Process from Biogas: Analysis of the Influence of the Operating Pressure in the Synthesis Loop","authors":"M. Victoria Del Pópolo Grzona, Eduardo M. Izurieta, Eduardo López, Marisa N. Pedernera","doi":"10.1021/acs.iecr.4c03170","DOIUrl":null,"url":null,"abstract":"This study presents the design and analysis of an energy-integrated process for producing green methanol from biogas. Emphasizing the need for sustainable fuel solutions, the paper explores the use of biogas, purified to biomethane, as a feedstock for methanol synthesis. The process involves a convective reformer with bayonet-type tubes for syngas production and a multitubular methanol synthesis reactor. The integration of thermal energy is a core feature, ensuring the process is self-sufficient. Key aspects analyzed include the impact of methanol synthesis loop pressure (30–90 bar) on performance metrics such as carbon and energy efficiency and CAPEX/OPEX of the loop. An optimum operating pressure of 40 bar was found. Simulation results indicate high methane conversion in the reformer (87.34%) and effective internal heat recovery due to the bayonet-type tubes (19%). The overall process achieves a carbon efficiency of 48.5% and an energy efficiency of around 64%.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"12 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c03170","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the design and analysis of an energy-integrated process for producing green methanol from biogas. Emphasizing the need for sustainable fuel solutions, the paper explores the use of biogas, purified to biomethane, as a feedstock for methanol synthesis. The process involves a convective reformer with bayonet-type tubes for syngas production and a multitubular methanol synthesis reactor. The integration of thermal energy is a core feature, ensuring the process is self-sufficient. Key aspects analyzed include the impact of methanol synthesis loop pressure (30–90 bar) on performance metrics such as carbon and energy efficiency and CAPEX/OPEX of the loop. An optimum operating pressure of 40 bar was found. Simulation results indicate high methane conversion in the reformer (87.34%) and effective internal heat recovery due to the bayonet-type tubes (19%). The overall process achieves a carbon efficiency of 48.5% and an energy efficiency of around 64%.
期刊介绍:
ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.