Xiaochong Guo, Bin Xiao, Kangping Wu, Mianling Zhang, Haixiang Hu
{"title":"Recent Advances in Photoredox/Chromium dual‐Catalyzed Carbonyl Addition Reactions: A Review","authors":"Xiaochong Guo, Bin Xiao, Kangping Wu, Mianling Zhang, Haixiang Hu","doi":"10.1002/adsc.202401315","DOIUrl":null,"url":null,"abstract":"The chromium‐catalysed Nozaki‐Hiyama‐Kishi (NHK) reaction is a very dependable technique for alcohol synthesis and is extensively used in the complete synthesis of natural compounds. The majority of these reactions occur via a reductive‐radical‐polar crossover (RRPCO) mechanism, which is crucial for the transformation of reactive radical intermediates. The production of radicals using photoinduced catalytic reactions is now among the most effective approaches. The photoinduced chromium‐catalysed addition reaction to carbonyl compounds is an effective technique for alcohol synthesis that integrates the benefits of photocatalysis with chromium catalysis. Photocatalysis significantly enhances the diversity of radical production, hence broadening the substrate scope in the chromium‐catalysed NHK reaction. This paper primarily examines the photoredox chromium dual‐catalysed carbonyl addition process for alcohol synthesis, including numerous methods for radical generation.","PeriodicalId":118,"journal":{"name":"Advanced Synthesis & Catalysis","volume":"15 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Synthesis & Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/adsc.202401315","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The chromium‐catalysed Nozaki‐Hiyama‐Kishi (NHK) reaction is a very dependable technique for alcohol synthesis and is extensively used in the complete synthesis of natural compounds. The majority of these reactions occur via a reductive‐radical‐polar crossover (RRPCO) mechanism, which is crucial for the transformation of reactive radical intermediates. The production of radicals using photoinduced catalytic reactions is now among the most effective approaches. The photoinduced chromium‐catalysed addition reaction to carbonyl compounds is an effective technique for alcohol synthesis that integrates the benefits of photocatalysis with chromium catalysis. Photocatalysis significantly enhances the diversity of radical production, hence broadening the substrate scope in the chromium‐catalysed NHK reaction. This paper primarily examines the photoredox chromium dual‐catalysed carbonyl addition process for alcohol synthesis, including numerous methods for radical generation.
期刊介绍:
Advanced Synthesis & Catalysis (ASC) is the leading primary journal in organic, organometallic, and applied chemistry.
The high impact of ASC can be attributed to the unique focus of the journal, which publishes exciting new results from academic and industrial labs on efficient, practical, and environmentally friendly organic synthesis. While homogeneous, heterogeneous, organic, and enzyme catalysis are key technologies to achieve green synthesis, significant contributions to the same goal by synthesis design, reaction techniques, flow chemistry, and continuous processing, multiphase catalysis, green solvents, catalyst immobilization, and recycling, separation science, and process development are also featured in ASC. The Aims and Scope can be found in the Notice to Authors or on the first page of the table of contents in every issue.