Primary Sulfur Isotopes of Intraplate Basalts and Implications for Deep S Recycling of Altered Oceanic Crust

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Xiang Wang, Zaicong Wang, Pu Sun, Zong-Feng Yang, Wen Zhang, Zongqi Zou, Stephen Foley, Lang Wang, Keqing Zong, Zhaochu Hu, Yongsheng Liu
{"title":"Primary Sulfur Isotopes of Intraplate Basalts and Implications for Deep S Recycling of Altered Oceanic Crust","authors":"Xiang Wang, Zaicong Wang, Pu Sun, Zong-Feng Yang, Wen Zhang, Zongqi Zou, Stephen Foley, Lang Wang, Keqing Zong, Zhaochu Hu, Yongsheng Liu","doi":"10.1029/2024gl111829","DOIUrl":null,"url":null,"abstract":"Altered oceanic crust (AOC) is the largest contributor to the subducted sulfur (S) budget and its recycling modulates the redox evolution and S distribution in the mantle. However, the role of AOC in the deep cycling of S remains poorly constrained. Here we probe the primary S isotopes of Cenozoic intraplate basalts in eastern China by investigating sulfide inclusions in magmatic clinopyroxene megacrysts. These basalts were derived from the deep mantle metasomatized by melts derived from recycled AOC but show MORB-like S isotopes (−0.9–0.9‰), suggesting that AOC-derived melts transfer negligible sulfate and hardly change the δ<sup>34</sup>S and redox state of the deeper mantle. This contrasts with the generally high δ<sup>34</sup>S values of mantle wedge peridotites and primary arc magmas that reflect the slab addition of sulfate, indicating that S species and isotopes released from the subducted slab and associated <i>f</i>O<sub>2</sub> are not constant and vary with subduction depth.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"82 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024gl111829","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Altered oceanic crust (AOC) is the largest contributor to the subducted sulfur (S) budget and its recycling modulates the redox evolution and S distribution in the mantle. However, the role of AOC in the deep cycling of S remains poorly constrained. Here we probe the primary S isotopes of Cenozoic intraplate basalts in eastern China by investigating sulfide inclusions in magmatic clinopyroxene megacrysts. These basalts were derived from the deep mantle metasomatized by melts derived from recycled AOC but show MORB-like S isotopes (−0.9–0.9‰), suggesting that AOC-derived melts transfer negligible sulfate and hardly change the δ34S and redox state of the deeper mantle. This contrasts with the generally high δ34S values of mantle wedge peridotites and primary arc magmas that reflect the slab addition of sulfate, indicating that S species and isotopes released from the subducted slab and associated fO2 are not constant and vary with subduction depth.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信