Engineering living cells with polymers for recyclable photoenzymatic catalysis

IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL
Jian Ning, Zhiyong Sun, René Hübner, Henrik Karring, Morten Frendø Ebbesen, Mathias Dimde, Changzhu Wu
{"title":"Engineering living cells with polymers for recyclable photoenzymatic catalysis","authors":"Jian Ning, Zhiyong Sun, René Hübner, Henrik Karring, Morten Frendø Ebbesen, Mathias Dimde, Changzhu Wu","doi":"10.1038/s41929-024-01259-5","DOIUrl":null,"url":null,"abstract":"<p>Engineering cell membranes for catalysis is challenging due to their inherent complexity. Here we introduce a polymeric strategy to overcome these challenges by chemically modifying cell membranes with catalytic polymers, enabling robust, recyclable and photoenzymatic catalysis. Through a one-step in situ atom transfer radical polymerization on living <i>Escherichia coli</i> cells, polymers are generated to protect the cells from environmental stressors while facilitating chemoenzymatic synthesis by integrating catalytic polymers with intracellular enzymes. As a proof of concept, a photoenzymatic cascade with an anthraquinone-based polymer and benzaldehyde lyase is demonstrated, converting benzyl alcohol into benzoin and achieving bioconversion yields that are 15 times higher than controls. Additionally, cells serve as large biological scaffolds for polymers, enabling recycling of macromolecular catalysts. A recyclable chemoenzymatic system incorporating an organometallic polymer with intracellular enzymes is also presented. Our versatile, straightforward approach offers a technology platform for engineering cell membranes for cascade synthesis, with broad implications for synthetic chemistry, polymer chemistry and biotechnology.</p><figure></figure>","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"238 1","pages":""},"PeriodicalIF":42.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41929-024-01259-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Engineering cell membranes for catalysis is challenging due to their inherent complexity. Here we introduce a polymeric strategy to overcome these challenges by chemically modifying cell membranes with catalytic polymers, enabling robust, recyclable and photoenzymatic catalysis. Through a one-step in situ atom transfer radical polymerization on living Escherichia coli cells, polymers are generated to protect the cells from environmental stressors while facilitating chemoenzymatic synthesis by integrating catalytic polymers with intracellular enzymes. As a proof of concept, a photoenzymatic cascade with an anthraquinone-based polymer and benzaldehyde lyase is demonstrated, converting benzyl alcohol into benzoin and achieving bioconversion yields that are 15 times higher than controls. Additionally, cells serve as large biological scaffolds for polymers, enabling recycling of macromolecular catalysts. A recyclable chemoenzymatic system incorporating an organometallic polymer with intracellular enzymes is also presented. Our versatile, straightforward approach offers a technology platform for engineering cell membranes for cascade synthesis, with broad implications for synthetic chemistry, polymer chemistry and biotechnology.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Catalysis
Nature Catalysis Chemical Engineering-Bioengineering
CiteScore
52.10
自引率
1.10%
发文量
140
期刊介绍: Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry. Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信