{"title":"A Slot-Type Ez Probe With a Lower Effective Center","authors":"Yu Tian;Xing-Chang Wei;Di Wang;Richard Xian-Ke Gao","doi":"10.1109/TEMC.2024.3503725","DOIUrl":null,"url":null,"abstract":"This article introduces a novel slot-type <italic>E<sub>z</sub></i> probe engineered to achieve a lower effective center. This innovation addresses the limitation inherent in traditional <italic>E<sub>z</sub></i> probes, which have a higher effective center and consequently suffer from low spatial resolution. The proposed probe incorporates a slot structure in its detection part, greatly lowering its effective center. Through simulation optimization, the slot structure is carefully designed to strike a balance between a high sensitivity and low effective center. To further elucidate the working principle of the slot probe, this article examines the effect of the probe's geometry on the effective center. The probe's design on a four-layer printed circuit board enables cost-effective fabrication without compromising stable performance. Operating within a frequency range of up to 30 GHz, the probe also effectively suppresses unwanted fields across a wide spectrum. Both simulation and measurement results corroborate the exceptional performance of the proposed probe, validating its efficacy in practical applications.","PeriodicalId":55012,"journal":{"name":"IEEE Transactions on Electromagnetic Compatibility","volume":"67 1","pages":"33-41"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electromagnetic Compatibility","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10790872/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article introduces a novel slot-type Ez probe engineered to achieve a lower effective center. This innovation addresses the limitation inherent in traditional Ez probes, which have a higher effective center and consequently suffer from low spatial resolution. The proposed probe incorporates a slot structure in its detection part, greatly lowering its effective center. Through simulation optimization, the slot structure is carefully designed to strike a balance between a high sensitivity and low effective center. To further elucidate the working principle of the slot probe, this article examines the effect of the probe's geometry on the effective center. The probe's design on a four-layer printed circuit board enables cost-effective fabrication without compromising stable performance. Operating within a frequency range of up to 30 GHz, the probe also effectively suppresses unwanted fields across a wide spectrum. Both simulation and measurement results corroborate the exceptional performance of the proposed probe, validating its efficacy in practical applications.
期刊介绍:
IEEE Transactions on Electromagnetic Compatibility publishes original and significant contributions related to all disciplines of electromagnetic compatibility (EMC) and relevant methods to predict, assess and prevent electromagnetic interference (EMI) and increase device/product immunity. The scope of the publication includes, but is not limited to Electromagnetic Environments; Interference Control; EMC and EMI Modeling; High Power Electromagnetics; EMC Standards, Methods of EMC Measurements; Computational Electromagnetics and Signal and Power Integrity, as applied or directly related to Electromagnetic Compatibility problems; Transmission Lines; Electrostatic Discharge and Lightning Effects; EMC in Wireless and Optical Technologies; EMC in Printed Circuit Board and System Design.