Photoemission spectroscopy of battery materials

IF 11.9 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Chenfeng Ding, Penghui Ji, Tongtong Li, Ting Guo, Zhong Xu, Taehoon Kim, Hui Zhang, Jiayu Wan, Luis K. Ono, Yabing Qi
{"title":"Photoemission spectroscopy of battery materials","authors":"Chenfeng Ding, Penghui Ji, Tongtong Li, Ting Guo, Zhong Xu, Taehoon Kim, Hui Zhang, Jiayu Wan, Luis K. Ono, Yabing Qi","doi":"10.1063/5.0235835","DOIUrl":null,"url":null,"abstract":"Recognized by the 2019 Nobel Prize in Chemistry, rechargeable lithium-ion battery (LIB) has become a world-revolutionary technology. Further developments of LIB-based and “beyond LIBs” regarding capacity, cycle life, and safety are intimately associated with the fundamental understanding of chemical compositions, structures, physical properties of electrodes and electrolytes, and other related components. The time-evolving snapshots of the dynamical processes occurring during the battery operation can help design better strategies to prevent the formation of uncontrolled interphase layers, dendrites, electrode/electrolyte decompositions, and generation of gases. Photoemission spectroscopy (PES) has become one of the important techniques for understanding the aforementioned aspects. However, many potential pitfalls and cautions need to be considered from sample preparation, during PES measurements, to data analyses. Although the primary focus of this article is not to evaluate the PES technique itself, we first introduce a minimal set of fundamental concepts to minimize misinterpretation arising from the physics of PES. Subsequently, we examine studies that utilize PES techniques to determine chemical compositions of solid- and liquid-state battery materials, energy level diagrams that bridge different terminologies between PES and electrochemistry, along with the theoretical aspects of PES evolving from first-principle calculations to machine learning. Toward the end of this review, we outline potential future research directions.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"233 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0235835","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Recognized by the 2019 Nobel Prize in Chemistry, rechargeable lithium-ion battery (LIB) has become a world-revolutionary technology. Further developments of LIB-based and “beyond LIBs” regarding capacity, cycle life, and safety are intimately associated with the fundamental understanding of chemical compositions, structures, physical properties of electrodes and electrolytes, and other related components. The time-evolving snapshots of the dynamical processes occurring during the battery operation can help design better strategies to prevent the formation of uncontrolled interphase layers, dendrites, electrode/electrolyte decompositions, and generation of gases. Photoemission spectroscopy (PES) has become one of the important techniques for understanding the aforementioned aspects. However, many potential pitfalls and cautions need to be considered from sample preparation, during PES measurements, to data analyses. Although the primary focus of this article is not to evaluate the PES technique itself, we first introduce a minimal set of fundamental concepts to minimize misinterpretation arising from the physics of PES. Subsequently, we examine studies that utilize PES techniques to determine chemical compositions of solid- and liquid-state battery materials, energy level diagrams that bridge different terminologies between PES and electrochemistry, along with the theoretical aspects of PES evolving from first-principle calculations to machine learning. Toward the end of this review, we outline potential future research directions.
电池材料的光发射光谱
获得2019年诺贝尔化学奖的可充电锂离子电池(LIB)已成为一项具有世界革命性的技术。基于锂离子电池和“超越锂离子电池”在容量、循环寿命和安全性方面的进一步发展与对电极和电解质的化学成分、结构、物理性质以及其他相关组件的基本理解密切相关。在电池运行过程中发生的动态过程的时间演化快照可以帮助设计更好的策略,以防止不受控制的间相层的形成、树突、电极/电解质分解和气体的产生。光发射光谱(PES)已成为了解上述方面的重要技术之一。然而,在PES测量期间,从样品制备到数据分析,需要考虑许多潜在的陷阱和注意事项。虽然本文的主要重点不是评估PES技术本身,但我们首先介绍了一组最小的基本概念,以尽量减少PES物理引起的误解。随后,我们研究了利用PES技术确定固态和液态电池材料化学成分的研究,连接PES和电化学之间不同术语的能级图,以及PES从第一性原理计算到机器学习的理论方面。在本文的最后,我们概述了未来可能的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied physics reviews
Applied physics reviews PHYSICS, APPLIED-
CiteScore
22.50
自引率
2.00%
发文量
113
审稿时长
2 months
期刊介绍: Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles: Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community. Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信