Jin-Woo Lee, Eun Sung Oh, Seungbok Lee, Tan Ngoc-Lan Phan, Taek-Soo Kim, Jung-Yong Lee, John R. Reynolds, Bumjoon J. Kim
{"title":"Strain-induced power output enhancement in intrinsically stretchable organic solar cells","authors":"Jin-Woo Lee, Eun Sung Oh, Seungbok Lee, Tan Ngoc-Lan Phan, Taek-Soo Kim, Jung-Yong Lee, John R. Reynolds, Bumjoon J. Kim","doi":"10.1016/j.joule.2024.11.009","DOIUrl":null,"url":null,"abstract":"Intrinsically stretchable organic solar cells (IS-OSCs) are a promising class of wearable power sources. Although the power conversion efficiency (PCE) and mechanical stretchability of IS-OSCs have significantly improved, the current stretchability level still falls short of meeting the demands of wearable electronics. The power output (PCE × photoactive area) of these OSCs is a key figure of merit in determining their potential as power sources. However, the impact of stretching on changes in the photoactive area and the resulting power output has not been investigated. In this study, we construct highly stretchable and efficient photoactive systems by designing a polymer donor, PBET-TF. IS-OSCs based on PBET-TF maintain over 80% of their original PCE up to 50% strain (strain at PCE<sub>80%</sub> = 50%), which significantly outperforms the reference PBDB-TF-based IS-OSCs (strain at PCE<sub>80%</sub> = 11%). Importantly, for the first time, we demonstrate strain-induced power output increases in IS-OSCs using the developed PBET-TF-based photoactive systems.","PeriodicalId":343,"journal":{"name":"Joule","volume":"82 1","pages":""},"PeriodicalIF":38.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2024.11.009","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Intrinsically stretchable organic solar cells (IS-OSCs) are a promising class of wearable power sources. Although the power conversion efficiency (PCE) and mechanical stretchability of IS-OSCs have significantly improved, the current stretchability level still falls short of meeting the demands of wearable electronics. The power output (PCE × photoactive area) of these OSCs is a key figure of merit in determining their potential as power sources. However, the impact of stretching on changes in the photoactive area and the resulting power output has not been investigated. In this study, we construct highly stretchable and efficient photoactive systems by designing a polymer donor, PBET-TF. IS-OSCs based on PBET-TF maintain over 80% of their original PCE up to 50% strain (strain at PCE80% = 50%), which significantly outperforms the reference PBDB-TF-based IS-OSCs (strain at PCE80% = 11%). Importantly, for the first time, we demonstrate strain-induced power output increases in IS-OSCs using the developed PBET-TF-based photoactive systems.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.