K. Kanishka H. De Silva, Katsutoshi Sato, Takahiro Naito, Takaaki Toriyama, Tomokazu Yamamoto, Ryotaro Aso, Yasukazu Murakami, Pradeep R. Varadwaj, Ryoji Asahi, Koji Inazu, Katsutoshi Nagaoka
{"title":"Realization of Ideal Ba Promoter State by Simultaneous Incorporation with Co into Carbon-protective Framework for Ammonia Synthesis Catalyst","authors":"K. Kanishka H. De Silva, Katsutoshi Sato, Takahiro Naito, Takaaki Toriyama, Tomokazu Yamamoto, Ryotaro Aso, Yasukazu Murakami, Pradeep R. Varadwaj, Ryoji Asahi, Koji Inazu, Katsutoshi Nagaoka","doi":"10.1002/aenm.202404030","DOIUrl":null,"url":null,"abstract":"Developing non-noble metal catalysts with excellent NH<sub>3</sub> synthesis activity under mild conditions is a long-term goal. The best catalysts reported to date often require laborious fabrication methods and controlled environments to fabricate the catalysts or high temperatures and long times to activate the catalysts. This work introduces a facile one-pot method to fabricate carbon (C)-based, barium (Ba)-promoted cobalt (Co) catalysts via the citric acid sol–gel method with metal nitrates as precursors and water as the solvent. This approach ensures the homogeneous incorporation of metal ions into the carbon framework. The resulting (Ba/Co)<sub>0.3</sub>/C catalyst demonstrates an outstanding NH<sub>3</sub> synthesis activity of 34 mmol g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup> (350 °C, 1.0 MPa) with excellent stability. In-depth characterizations reveal that Ba exists as barium oxide (BaO), uniformly distributed on the carbon framework and around the Co nanoparticles. It is uncovered that retarding barium carbonate (BaCO<sub>3</sub>) formation in the fresh catalyst significantly reduces the reduction temperature and time (485 °C/4 h), which is a fundamental advantage of this method. Density functional theory and molecular dynamics simulations indeed support the experimental observations. It is anticipated that this simple and economical strategy will resolve the issues in a broad field of heterogeneous catalyst research.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"37 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404030","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Developing non-noble metal catalysts with excellent NH3 synthesis activity under mild conditions is a long-term goal. The best catalysts reported to date often require laborious fabrication methods and controlled environments to fabricate the catalysts or high temperatures and long times to activate the catalysts. This work introduces a facile one-pot method to fabricate carbon (C)-based, barium (Ba)-promoted cobalt (Co) catalysts via the citric acid sol–gel method with metal nitrates as precursors and water as the solvent. This approach ensures the homogeneous incorporation of metal ions into the carbon framework. The resulting (Ba/Co)0.3/C catalyst demonstrates an outstanding NH3 synthesis activity of 34 mmol gcat−1 h−1 (350 °C, 1.0 MPa) with excellent stability. In-depth characterizations reveal that Ba exists as barium oxide (BaO), uniformly distributed on the carbon framework and around the Co nanoparticles. It is uncovered that retarding barium carbonate (BaCO3) formation in the fresh catalyst significantly reduces the reduction temperature and time (485 °C/4 h), which is a fundamental advantage of this method. Density functional theory and molecular dynamics simulations indeed support the experimental observations. It is anticipated that this simple and economical strategy will resolve the issues in a broad field of heterogeneous catalyst research.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.