Four-dimensional modelling reveals decline in cropland soil pH during last four decades in China’s Mollisols region

IF 5.6 1区 农林科学 Q1 SOIL SCIENCE
Jian Chen, Enze Xie, Yuxuan Peng, Guojing Yan, Jun Jiang, Wenyou Hu, Yuguo Zhao, Khalid Saifullah Khan, Yongcun Zhao
{"title":"Four-dimensional modelling reveals decline in cropland soil pH during last four decades in China’s Mollisols region","authors":"Jian Chen, Enze Xie, Yuxuan Peng, Guojing Yan, Jun Jiang, Wenyou Hu, Yuguo Zhao, Khalid Saifullah Khan, Yongcun Zhao","doi":"10.1016/j.geoderma.2024.117135","DOIUrl":null,"url":null,"abstract":"The degradation of fertile Mollisols due to unsustainable management practices poses serious threats to climate change mitigation and food security. Yet, the lack of four-dimensional (4D) dynamic information (i.e., space, depth, and time) on cropland soil pH hinders sustainable soil management. To fill this knowledge gap, over 17,000 soil pH samples were first collected from the Mollisols region in Northeast China. Then, an automatic machine learning model coupled with space-for-time substitution (AutoML<ce:inf loc=\"post\">st</ce:inf>) was developed for mapping the 4D dynamics of cropland soil pH during 1980–2023. Results showed that AutoML<ce:inf loc=\"post\">st</ce:inf> performed well in 4D modelling of cropland soil pH, with a coefficient of determination of 0.88. The topsoil (0–30 cm) pH significantly declined from 6.83 in 1980 to 6.43 in 2023 in Northeast China, with an average decline rate of 0.0038 units yr<ce:sup loc=\"post\">−1</ce:sup> (0.0014–0.0063 units yr<ce:sup loc=\"post\">−1</ce:sup>). The pH declines in the deeper soil layers (30–60 and 60–100 cm) were slight and statistically insignificant. The excessive use of chemical nitrogen (N) fertilizers and N deposition jointly contributed to the decline of cropland soil pH, but the impact of N deposition has increased over time. Although implementing China’s zero-growth policy for chemical fertilizer application will increase soil pH under the shared socioeconomic pathway (SSP) 1–2.6 and 5–8.5 scenarios, the current decline in cropland soil pH should not be overlooked to ensure the health of Mollisols. These findings suggest that the sustainable management of Mollisols resources requires strict monitoring of soil pH dynamics to mitigate potential soil acidification risks.","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"200 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.geoderma.2024.117135","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The degradation of fertile Mollisols due to unsustainable management practices poses serious threats to climate change mitigation and food security. Yet, the lack of four-dimensional (4D) dynamic information (i.e., space, depth, and time) on cropland soil pH hinders sustainable soil management. To fill this knowledge gap, over 17,000 soil pH samples were first collected from the Mollisols region in Northeast China. Then, an automatic machine learning model coupled with space-for-time substitution (AutoMLst) was developed for mapping the 4D dynamics of cropland soil pH during 1980–2023. Results showed that AutoMLst performed well in 4D modelling of cropland soil pH, with a coefficient of determination of 0.88. The topsoil (0–30 cm) pH significantly declined from 6.83 in 1980 to 6.43 in 2023 in Northeast China, with an average decline rate of 0.0038 units yr−1 (0.0014–0.0063 units yr−1). The pH declines in the deeper soil layers (30–60 and 60–100 cm) were slight and statistically insignificant. The excessive use of chemical nitrogen (N) fertilizers and N deposition jointly contributed to the decline of cropland soil pH, but the impact of N deposition has increased over time. Although implementing China’s zero-growth policy for chemical fertilizer application will increase soil pH under the shared socioeconomic pathway (SSP) 1–2.6 and 5–8.5 scenarios, the current decline in cropland soil pH should not be overlooked to ensure the health of Mollisols. These findings suggest that the sustainable management of Mollisols resources requires strict monitoring of soil pH dynamics to mitigate potential soil acidification risks.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信