Fractional-order dependent Radial basis functions meshless methods for the integral fractional Laplacian

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Zhaopeng Hao , Zhiqiang Cai , Zhongqiang Zhang
{"title":"Fractional-order dependent Radial basis functions meshless methods for the integral fractional Laplacian","authors":"Zhaopeng Hao ,&nbsp;Zhiqiang Cai ,&nbsp;Zhongqiang Zhang","doi":"10.1016/j.camwa.2024.11.027","DOIUrl":null,"url":null,"abstract":"<div><div>We study the numerical evaluation of the integral fractional Laplacian and its application in solving fractional diffusion equations. We derive a pseudo-spectral formula for the integral fractional Laplacian operator based on fractional order-dependent, generalized multi-quadratic radial basis functions (RBFs) to address efficient computation of the hyper-singular integral. We apply the proposed formula to solving fractional diffusion equations and design a simple, easy-to-implement and nearly integration-free meshless method. We discuss the convergence of the novel meshless method through equivalent Galerkin formulations. We carry out numerical experiments to demonstrate the accuracy and efficiency of the proposed approach compared to the existing method using Gaussian RBFs.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"178 ","pages":"Pages 197-213"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124005248","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study the numerical evaluation of the integral fractional Laplacian and its application in solving fractional diffusion equations. We derive a pseudo-spectral formula for the integral fractional Laplacian operator based on fractional order-dependent, generalized multi-quadratic radial basis functions (RBFs) to address efficient computation of the hyper-singular integral. We apply the proposed formula to solving fractional diffusion equations and design a simple, easy-to-implement and nearly integration-free meshless method. We discuss the convergence of the novel meshless method through equivalent Galerkin formulations. We carry out numerical experiments to demonstrate the accuracy and efficiency of the proposed approach compared to the existing method using Gaussian RBFs.
分数阶相关径向基函数的积分分数阶拉普拉斯的无网格方法
研究了积分分数阶拉普拉斯算子的数值计算及其在分数阶扩散方程求解中的应用。为了解决超奇异积分的高效计算问题,我们基于分数阶相关的广义多二次径向基函数(rbf),导出了积分分数阶拉普拉斯算子的伪谱公式。我们将提出的公式应用于求解分数阶扩散方程,并设计了一种简单、易于实现且几乎不需要积分的无网格方法。通过等效伽辽金公式讨论了该方法的收敛性。我们进行了数值实验,与使用高斯rbf的现有方法相比,证明了所提出方法的准确性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信