BMI Interacts with the Genome to Regulate Gene Expression Globally, with Emphasis in the Brain and Gut.

Rebecca Signer, Carina Seah, Hannah Young, Kayla Retallick-Townsley, Agathe De Pins, Alanna Cote, Seoyeon Lee, Meng Jia, Jessica Johnson, Keira J A Johnston, Jiayi Xu, Kristen J Brennand, Laura M Huckins
{"title":"BMI Interacts with the Genome to Regulate Gene Expression Globally, with Emphasis in the Brain and Gut.","authors":"Rebecca Signer, Carina Seah, Hannah Young, Kayla Retallick-Townsley, Agathe De Pins, Alanna Cote, Seoyeon Lee, Meng Jia, Jessica Johnson, Keira J A Johnston, Jiayi Xu, Kristen J Brennand, Laura M Huckins","doi":"10.1101/2024.11.26.24317923","DOIUrl":null,"url":null,"abstract":"<p><p>Genome-wide association studies identify common genomic variants associated with disease across a population. Individual environmental effects are often not included, despite evidence that environment mediates genomic regulation of higher order biology. Body mass index (BMI) is associated with complex disorders across clinical specialties, yet has not been modeled as a genomic environment. Here, we tested for expression quantitative trait (eQTL) loci that contextually regulate gene expression across the BMI spectrum using an interaction approach. We parsed the impact of cell type, enhancer interactions, and created novel BMI-dynamic gene expression predictor models. We found that BMI main effects associated with endocrine gene expression, while interactive variant-by-BMI effects impacted gene expression in the brain and gut. Cortical BMI-dynamic loci were experimentally dysregulated by inflammatory cytokines in an <i>in vitro</i> system. Using BMI-dynamic models, we identify novel genes in nitric oxide signaling pathways in the nucleus accumbens significantly associated with depression and smoking. While neither genetics nor BMI are sufficient as standalone measures to capture the complexity of downstream cellular consequences, including environment powers disease gene discovery.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623720/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.11.26.24317923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Genome-wide association studies identify common genomic variants associated with disease across a population. Individual environmental effects are often not included, despite evidence that environment mediates genomic regulation of higher order biology. Body mass index (BMI) is associated with complex disorders across clinical specialties, yet has not been modeled as a genomic environment. Here, we tested for expression quantitative trait (eQTL) loci that contextually regulate gene expression across the BMI spectrum using an interaction approach. We parsed the impact of cell type, enhancer interactions, and created novel BMI-dynamic gene expression predictor models. We found that BMI main effects associated with endocrine gene expression, while interactive variant-by-BMI effects impacted gene expression in the brain and gut. Cortical BMI-dynamic loci were experimentally dysregulated by inflammatory cytokines in an in vitro system. Using BMI-dynamic models, we identify novel genes in nitric oxide signaling pathways in the nucleus accumbens significantly associated with depression and smoking. While neither genetics nor BMI are sufficient as standalone measures to capture the complexity of downstream cellular consequences, including environment powers disease gene discovery.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信