Berrin Çelik, Muhammed Emin Baslak, Mehmet Zahid Genç, Mahmut Emin Çelik
{"title":"Automated segmentation of dental restorations using deep learning: exploring data augmentation techniques.","authors":"Berrin Çelik, Muhammed Emin Baslak, Mehmet Zahid Genç, Mahmut Emin Çelik","doi":"10.1007/s11282-024-00794-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Deep learning has revolutionized image analysis for dentistry. Automated segmentation of dental radiographs is of great importance towards digital dentistry. The performance of deep learning models heavily relies on the quality and diversity of the training data. Data augmentation is a widely used technique implemented in machine learning and deep learning to artificially increase the size and diversity of a training dataset by applying various transformations to the original data.</p><p><strong>Methods: </strong>This work aims to automatically segment implants, prostheses, and fillings in panoramic images using 9 different deep learning segmentation models. Later, it explores the effect of data augmentation methods on segmentation performance of the models. Eight different data augmentation techniques are examined. Performance is evaluated by well-accepted metrics such as intersection over union (IoU) and Dice coefficient.</p><p><strong>Results: </strong>While averaging the segmentation results for the three classes, IoU varies between 0.62 and 0.82 while Dice score is between 0.75 and 0.9 among deep learning models used. Augmentation techniques provided performance improvements of up to 3.37%, 5.75% and 8.75% for implant, prosthesis and filling classes, respectively.</p><p><strong>Conclusions: </strong>Findings reveal that choosing optimal augmentation strategies depends on both model architecture and dental structure type.</p>","PeriodicalId":56103,"journal":{"name":"Oral Radiology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oral Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11282-024-00794-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Deep learning has revolutionized image analysis for dentistry. Automated segmentation of dental radiographs is of great importance towards digital dentistry. The performance of deep learning models heavily relies on the quality and diversity of the training data. Data augmentation is a widely used technique implemented in machine learning and deep learning to artificially increase the size and diversity of a training dataset by applying various transformations to the original data.
Methods: This work aims to automatically segment implants, prostheses, and fillings in panoramic images using 9 different deep learning segmentation models. Later, it explores the effect of data augmentation methods on segmentation performance of the models. Eight different data augmentation techniques are examined. Performance is evaluated by well-accepted metrics such as intersection over union (IoU) and Dice coefficient.
Results: While averaging the segmentation results for the three classes, IoU varies between 0.62 and 0.82 while Dice score is between 0.75 and 0.9 among deep learning models used. Augmentation techniques provided performance improvements of up to 3.37%, 5.75% and 8.75% for implant, prosthesis and filling classes, respectively.
Conclusions: Findings reveal that choosing optimal augmentation strategies depends on both model architecture and dental structure type.
期刊介绍:
As the official English-language journal of the Japanese Society for Oral and Maxillofacial Radiology and the Asian Academy of Oral and Maxillofacial Radiology, Oral Radiology is intended to be a forum for international collaboration in head and neck diagnostic imaging and all related fields. Oral Radiology features cutting-edge research papers, review articles, case reports, and technical notes from both the clinical and experimental fields. As membership in the Society is not a prerequisite, contributions are welcome from researchers and clinicians worldwide.