Mitochondrial Dysfunction and Calcium Homeostasis in Heart Failure: Exploring the Interplay Between Oxidative Stress and Cardiac Remodeling for Future Therapeutic Innovations.
Emily Johnson, Liam Nguyen, Jameela Shukri Albakri, Oliver Smith
{"title":"Mitochondrial Dysfunction and Calcium Homeostasis in Heart Failure: Exploring the Interplay Between Oxidative Stress and Cardiac Remodeling for Future Therapeutic Innovations.","authors":"Emily Johnson, Liam Nguyen, Jameela Shukri Albakri, Oliver Smith","doi":"10.1016/j.cpcardiol.2024.102968","DOIUrl":null,"url":null,"abstract":"<p><p>Heart failure (HF) is a multifaceted clinical syndrome characterized by the heart's inability to pump sufficient blood to meet the body's metabolic demands. It arises from various etiologies, including myocardial injury, hypertension, and valvular heart disease. A critical aspect of HF pathophysiology involves mitochondrial dysfunction, particularly concerning calcium (Ca2+) homeostasis and oxidative stress. This review highlights the pivotal role of excess mitochondrial Ca2+ in exacerbating oxidative stress, contributing significantly to HF progression. Novel insights are provided regarding the mechanisms by which mitochondrial Ca2+ overload leads to increased production of reactive oxygen species (ROS) and impaired cellular function. Despite this understanding, key gaps in research remain, particularly in elucidating the complex interplay between mitochondrial dynamics and oxidative stress across different HF phenotypes. Furthermore, therapeutic strategies targeting mitochondrial dysfunction are still in their infancy, with limited applications in clinical practice. By summarizing recent findings and identifying these critical research gaps, this review aims to pave the way for innovative therapeutic approaches that improve the management of heart failure, ultimately enhancing patient outcomes through targeted interventions.</p>","PeriodicalId":51006,"journal":{"name":"Current Problems in Cardiology","volume":" ","pages":"102968"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Problems in Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.cpcardiol.2024.102968","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Heart failure (HF) is a multifaceted clinical syndrome characterized by the heart's inability to pump sufficient blood to meet the body's metabolic demands. It arises from various etiologies, including myocardial injury, hypertension, and valvular heart disease. A critical aspect of HF pathophysiology involves mitochondrial dysfunction, particularly concerning calcium (Ca2+) homeostasis and oxidative stress. This review highlights the pivotal role of excess mitochondrial Ca2+ in exacerbating oxidative stress, contributing significantly to HF progression. Novel insights are provided regarding the mechanisms by which mitochondrial Ca2+ overload leads to increased production of reactive oxygen species (ROS) and impaired cellular function. Despite this understanding, key gaps in research remain, particularly in elucidating the complex interplay between mitochondrial dynamics and oxidative stress across different HF phenotypes. Furthermore, therapeutic strategies targeting mitochondrial dysfunction are still in their infancy, with limited applications in clinical practice. By summarizing recent findings and identifying these critical research gaps, this review aims to pave the way for innovative therapeutic approaches that improve the management of heart failure, ultimately enhancing patient outcomes through targeted interventions.
期刊介绍:
Under the editorial leadership of noted cardiologist Dr. Hector O. Ventura, Current Problems in Cardiology provides focused, comprehensive coverage of important clinical topics in cardiology. Each monthly issues, addresses a selected clinical problem or condition, including pathophysiology, invasive and noninvasive diagnosis, drug therapy, surgical management, and rehabilitation; or explores the clinical applications of a diagnostic modality or a particular category of drugs. Critical commentary from the distinguished editorial board accompanies each monograph, providing readers with additional insights. An extensive bibliography in each issue saves hours of library research.