Kazi Rahman, Isaiah Wilt, Abigail A Jolley, Bhabadeb Chowdhury, Siddhartha A K Datta, Alex A Compton
{"title":"SNARE mimicry by the CD225 domain of IFITM3 enables regulation of homotypic late endosome fusion.","authors":"Kazi Rahman, Isaiah Wilt, Abigail A Jolley, Bhabadeb Chowdhury, Siddhartha A K Datta, Alex A Compton","doi":"10.1038/s44318-024-00334-8","DOIUrl":null,"url":null,"abstract":"<p><p>The CD225/Dispanin superfamily contains membrane proteins that regulate vesicular transport and membrane fusion events required for neurotransmission, glucose transport, and antiviral immunity. However, how the CD225 domain controls membrane trafficking has remained unknown. Here we show that the CD225 domain contains a SNARE-like motif that enables interaction with cellular SNARE fusogens. Proline-rich transmembrane protein 2 (PRRT2) encodes a SNARE-like motif that enables interaction with neuronal SNARE proteins; mutations in this region disrupt SNARE binding and are linked to neurological disease. Another CD225 member, interferon-induced transmembrane protein 3 (IFITM3), protects cells against influenza A virus infection. IFITM3 interacts with SNARE proteins that mediate late endosome-late endosome (homotypic) fusion and late endosome-lysosome (heterotypic) fusion. IFITM3 binds to syntaxin 7 (STX7) in cells and in vitro, and mutations that abrogate STX7 binding cause loss of antiviral activity against influenza A virus. Mechanistically, IFITM3 disrupts assembly of the SNARE complex controlling homotypic fusion and accelerates the trafficking of endosomal cargo to lysosomes. Our results suggest that SNARE modulation plays a previously unrecognized role in the diverse functions performed by CD225 proteins.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-024-00334-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The CD225/Dispanin superfamily contains membrane proteins that regulate vesicular transport and membrane fusion events required for neurotransmission, glucose transport, and antiviral immunity. However, how the CD225 domain controls membrane trafficking has remained unknown. Here we show that the CD225 domain contains a SNARE-like motif that enables interaction with cellular SNARE fusogens. Proline-rich transmembrane protein 2 (PRRT2) encodes a SNARE-like motif that enables interaction with neuronal SNARE proteins; mutations in this region disrupt SNARE binding and are linked to neurological disease. Another CD225 member, interferon-induced transmembrane protein 3 (IFITM3), protects cells against influenza A virus infection. IFITM3 interacts with SNARE proteins that mediate late endosome-late endosome (homotypic) fusion and late endosome-lysosome (heterotypic) fusion. IFITM3 binds to syntaxin 7 (STX7) in cells and in vitro, and mutations that abrogate STX7 binding cause loss of antiviral activity against influenza A virus. Mechanistically, IFITM3 disrupts assembly of the SNARE complex controlling homotypic fusion and accelerates the trafficking of endosomal cargo to lysosomes. Our results suggest that SNARE modulation plays a previously unrecognized role in the diverse functions performed by CD225 proteins.
期刊介绍:
The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance.
With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.