Nadezda A Stepicheva, Zhongfang Weng, Sarah Cao, Lesley M Foley, Guodong Cao
{"title":"A Mouse Model for Vascular Cognitive Impairment and Dementia Based on Needle-guided Asymmetric Bilateral Common Carotid Artery Stenosis.","authors":"Nadezda A Stepicheva, Zhongfang Weng, Sarah Cao, Lesley M Foley, Guodong Cao","doi":"10.3791/67092","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular cognitive impairment and dementia (VCID) results from vascular brain injury. Given VCID's high incidence, which is expected to continue rising as the population ages, it is critical to establish a robust animal model for the disease. This paper presents a novel method of creating a mouse model of VCID that is based on asymmetric bilateral common carotid artery stenosis, which mimics human chronic cerebral hypoperfusion caused by carotid atherosclerosis. Briefly, common carotid arteries (CCAs) are ligated to different gauge needles (32 G for the right CCA and 34 G for the left CCA) using 7-0 silk sutures followed by immediate needle removal. The remaining suture rings cause persistent blood flow reduction and long-term cognitive impairment associated with white matter injury, microinfarcts, and reactive gliosis, thus closely mimicking the pathogenesis of VCID. Importantly, in this needle model, the clinical representations do not revert with time, providing reliable long-term cognitive impairment. Moreover, the survival rate 24 weeks post surgery was 81.6%, which is higher compared to the other established models of VCID with a similar level of blood flow reduction. Additional advantages include low material cost and compatibility with MRI to monitor brain injury in live animals since no metal is implanted. The main challenge in employing the needle model of VCID is the requirement for developing advanced surgical skills since mouse CCAs are less than 0.6 mm in diameter and are very fragile. High-quality visual representation of the surgery will thus help researchers to master this technique and advance our understanding of VCID, potentially leading to the development of novel therapeutic modalities to decrease the devastating cognitive decline associated with VCID.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 213","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67092","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Vascular cognitive impairment and dementia (VCID) results from vascular brain injury. Given VCID's high incidence, which is expected to continue rising as the population ages, it is critical to establish a robust animal model for the disease. This paper presents a novel method of creating a mouse model of VCID that is based on asymmetric bilateral common carotid artery stenosis, which mimics human chronic cerebral hypoperfusion caused by carotid atherosclerosis. Briefly, common carotid arteries (CCAs) are ligated to different gauge needles (32 G for the right CCA and 34 G for the left CCA) using 7-0 silk sutures followed by immediate needle removal. The remaining suture rings cause persistent blood flow reduction and long-term cognitive impairment associated with white matter injury, microinfarcts, and reactive gliosis, thus closely mimicking the pathogenesis of VCID. Importantly, in this needle model, the clinical representations do not revert with time, providing reliable long-term cognitive impairment. Moreover, the survival rate 24 weeks post surgery was 81.6%, which is higher compared to the other established models of VCID with a similar level of blood flow reduction. Additional advantages include low material cost and compatibility with MRI to monitor brain injury in live animals since no metal is implanted. The main challenge in employing the needle model of VCID is the requirement for developing advanced surgical skills since mouse CCAs are less than 0.6 mm in diameter and are very fragile. High-quality visual representation of the surgery will thus help researchers to master this technique and advance our understanding of VCID, potentially leading to the development of novel therapeutic modalities to decrease the devastating cognitive decline associated with VCID.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.