Regulatory factor X1 promotes sorafenib-induced ferroptosis in hepatocellular carcinoma by transcriptional regulation of BECN1.

IF 4.9 2区 医学 Q2 CELL BIOLOGY
Zhiwen Yang, Yichuan Yuan, Yi Niu, Dinglan Zuo, Wenwu Liu, Kai Li, Yunxing Shi, Zhiyu Qiu, Keren Li, Zhu Lin, Chengrui Zhong, Zhenkun Huang, Wei He, Xinyuan Guan, Yunfei Yuan, Weian Zeng, Jiliang Qiu, Binkui Li
{"title":"Regulatory factor X1 promotes sorafenib-induced ferroptosis in hepatocellular carcinoma by transcriptional regulation of BECN1.","authors":"Zhiwen Yang, Yichuan Yuan, Yi Niu, Dinglan Zuo, Wenwu Liu, Kai Li, Yunxing Shi, Zhiyu Qiu, Keren Li, Zhu Lin, Chengrui Zhong, Zhenkun Huang, Wei He, Xinyuan Guan, Yunfei Yuan, Weian Zeng, Jiliang Qiu, Binkui Li","doi":"10.1007/s13402-024-01017-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sorafenib is a commonly used first-line kinase-targeted drug for advanced hepatocellular carcinoma (HCC) patients suffering from limited efficacy. Emerging evidence indicates that sorafenib exerts anti-cancer activity through the induction of ferroptosis in HCC cells, but the underlying mechanism is still unclear.</p><p><strong>Methods: </strong>The whole transcriptome sequencing and bioinformatics analysis were used to screen for target genes. The expression and subcellular localization of regulatory factor X1 (RFX1) were determined through immunohistochemistry, immunofluorescence, PCR and western blot analyses. The impact of RFX1 on HCC cell growth was assessed using CCK8, colony formation assays, cell death assays, and animal experiments. Glutathione measurement, iron assay and lipid peroxidation detection assays were performed to investigate ferroptosis of HCC cells. The regulatory mechanism of RFX1 in HCC was investigated by sgRFX1, co-IP, ChIP and luciferase experiments. Immunohistochemical and survival analyses were performed to examine the prognostic significance of RFX1 in HCC.</p><p><strong>Results: </strong>In this study, we found that RFX1 promote ferroptosis in HCC cells. Further, we showed that sorafenib induces cell death through RFX1-mediated ferroptosis in HCC cells. The enhancing effect of RFX1 on HCC cell ferroptosis is largely dependent on inhibition of cystine/glutamate antiporter (system Xc-) activity through the BECN-SLC7A11 axis, where RFX1 directly binds to the promoter region of BECN1 and upregulates BECN1 expression. In addition, a STAT3-RFX1-BECN1 signalling loop was found to promote RFX1 expression in HCC cells.</p><p><strong>Conclusions: </strong>Our study reveals a novel mechanism underlying sorafenib-induced HCC cell death.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-024-01017-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Sorafenib is a commonly used first-line kinase-targeted drug for advanced hepatocellular carcinoma (HCC) patients suffering from limited efficacy. Emerging evidence indicates that sorafenib exerts anti-cancer activity through the induction of ferroptosis in HCC cells, but the underlying mechanism is still unclear.

Methods: The whole transcriptome sequencing and bioinformatics analysis were used to screen for target genes. The expression and subcellular localization of regulatory factor X1 (RFX1) were determined through immunohistochemistry, immunofluorescence, PCR and western blot analyses. The impact of RFX1 on HCC cell growth was assessed using CCK8, colony formation assays, cell death assays, and animal experiments. Glutathione measurement, iron assay and lipid peroxidation detection assays were performed to investigate ferroptosis of HCC cells. The regulatory mechanism of RFX1 in HCC was investigated by sgRFX1, co-IP, ChIP and luciferase experiments. Immunohistochemical and survival analyses were performed to examine the prognostic significance of RFX1 in HCC.

Results: In this study, we found that RFX1 promote ferroptosis in HCC cells. Further, we showed that sorafenib induces cell death through RFX1-mediated ferroptosis in HCC cells. The enhancing effect of RFX1 on HCC cell ferroptosis is largely dependent on inhibition of cystine/glutamate antiporter (system Xc-) activity through the BECN-SLC7A11 axis, where RFX1 directly binds to the promoter region of BECN1 and upregulates BECN1 expression. In addition, a STAT3-RFX1-BECN1 signalling loop was found to promote RFX1 expression in HCC cells.

Conclusions: Our study reveals a novel mechanism underlying sorafenib-induced HCC cell death.

调节因子X1通过BECN1的转录调控促进索拉非尼诱导的肝癌铁下垂。
背景:索拉非尼是晚期肝细胞癌(HCC)患者常用的一线激酶靶向药物,但疗效有限。新出现的证据表明索拉非尼通过诱导肝癌细胞铁下垂发挥抗癌活性,但其潜在机制尚不清楚。方法:采用全转录组测序和生物信息学分析筛选靶基因。通过免疫组织化学、免疫荧光、PCR和western blot检测调节因子X1 (RFX1)的表达和亚细胞定位。通过CCK8、菌落形成试验、细胞死亡试验和动物实验评估RFX1对HCC细胞生长的影响。采用谷胱甘肽测定、铁含量测定和脂质过氧化检测检测肝癌细胞铁下垂。通过sgRFX1、co-IP、ChIP和荧光素酶实验研究RFX1在HCC中的调控机制。通过免疫组织化学和生存分析来检验RFX1在HCC中的预后意义。结果:本研究发现RFX1促进肝癌细胞铁下垂。此外,我们发现索拉非尼通过rfx1介导的肝癌细胞铁凋亡诱导细胞死亡。RFX1对HCC细胞铁凋亡的增强作用主要依赖于通过BECN-SLC7A11轴抑制胱氨酸/谷氨酸反转运蛋白(系统Xc-)活性,其中RFX1直接结合BECN1的启动子区域并上调BECN1的表达。此外,STAT3-RFX1-BECN1信号通路在HCC细胞中促进RFX1的表达。结论:我们的研究揭示了索拉非尼诱导HCC细胞死亡的新机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellular Oncology
Cellular Oncology ONCOLOGY-CELL BIOLOGY
CiteScore
10.30
自引率
1.50%
发文量
86
审稿时长
12 months
期刊介绍: The Official Journal of the International Society for Cellular Oncology Focuses on translational research Addresses the conversion of cell biology to clinical applications Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions. A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients. In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信