{"title":"Ligand-Functionalized Organometallic Polyoxometalate as an Efficient Catalyst Precursor for Amide Hydrogenation.","authors":"Shun Hayashi, Koichi Momma, Kiyohiro Adachi, Daisuke Hashizume","doi":"10.1021/acsorginorgau.4c00071","DOIUrl":null,"url":null,"abstract":"<p><p>Amide hydrogenation is an important process for producing amines, with the development of efficient heterogeneous catalysts relying on the creation of bimetallic active sites where the two components interact synergistically. In this study, we develop a method for preparing catalysts using ligand-functionalized organometallic polyoxometalates by synthesizing a Rh-Mo organometallic polyoxometalate, [(RhCp<sup>E</sup>)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>] (Cp<sup>E</sup> = C<sub>5</sub>(CH<sub>3</sub>)<sub>3</sub>(COOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>), with Rh-O-Mo interfacial structures and ethoxycarbonyl-functionalized ligands as a catalyst precursor. The activity of supported Rh-Mo catalysts for amide hydrogenation depend on the precursor used, with [(RhCp<sup>E</sup>)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>] showing the highest activity, followed by [(RhCp*)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>] (Cp* = C<sub>5</sub>(CH<sub>3</sub>)<sub>5</sub>), and then RhCl<sub>3</sub> combined with (NH<sub>4</sub>)<sub>6</sub>[Mo<sub>7</sub>O<sub>24</sub>]·4H<sub>2</sub>O. The catalyst prepared from [(RhCp<sup>E</sup>)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>] effectively hydrogenates tertiary, secondary, and primary amides under mild conditions (0.8 MPa H<sub>2</sub>, 353-393 K), demonstrating a high activity and selectivity (conversion: 97%, selectivity: 76%) for primary amide hydrogenation under NH<sub>3</sub>-free conditions. Furthermore, we determine that carbonyl oxygen atoms in Cp<sup>E</sup> ligands contribute to the electrostatic interaction with Al<sub>2</sub>O<sub>3</sub>, leading to the high dispersibility of [(RhCp<sup>E</sup>)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>] on the support. We conclude that the high efficiency of [(RhCp<sup>E</sup>)<sub>4</sub>Mo<sub>4</sub>O<sub>16</sub>] as a catalyst precursor originates from the effective formation of Rh/Mo interfacial active sites, which is assisted by the electrostatic interaction between the Cp<sup>E</sup> ligands and support.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"4 6","pages":"705-711"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621951/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Organic & Inorganic Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsorginorgau.4c00071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Amide hydrogenation is an important process for producing amines, with the development of efficient heterogeneous catalysts relying on the creation of bimetallic active sites where the two components interact synergistically. In this study, we develop a method for preparing catalysts using ligand-functionalized organometallic polyoxometalates by synthesizing a Rh-Mo organometallic polyoxometalate, [(RhCpE)4Mo4O16] (CpE = C5(CH3)3(COOC2H5)2), with Rh-O-Mo interfacial structures and ethoxycarbonyl-functionalized ligands as a catalyst precursor. The activity of supported Rh-Mo catalysts for amide hydrogenation depend on the precursor used, with [(RhCpE)4Mo4O16] showing the highest activity, followed by [(RhCp*)4Mo4O16] (Cp* = C5(CH3)5), and then RhCl3 combined with (NH4)6[Mo7O24]·4H2O. The catalyst prepared from [(RhCpE)4Mo4O16] effectively hydrogenates tertiary, secondary, and primary amides under mild conditions (0.8 MPa H2, 353-393 K), demonstrating a high activity and selectivity (conversion: 97%, selectivity: 76%) for primary amide hydrogenation under NH3-free conditions. Furthermore, we determine that carbonyl oxygen atoms in CpE ligands contribute to the electrostatic interaction with Al2O3, leading to the high dispersibility of [(RhCpE)4Mo4O16] on the support. We conclude that the high efficiency of [(RhCpE)4Mo4O16] as a catalyst precursor originates from the effective formation of Rh/Mo interfacial active sites, which is assisted by the electrostatic interaction between the CpE ligands and support.
期刊介绍:
ACS Organic & Inorganic Au is an open access journal that publishes original experimental and theoretical/computational studies on organic organometallic inorganic crystal growth and engineering and organic process chemistry. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Organic chemistry Organometallic chemistry Inorganic Chemistry and Organic Process Chemistry.