Exploration and development of molecule-based printed electronics materials: an integrated approach using experimental, computational, and data sciences.

IF 7.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Science and Technology of Advanced Materials Pub Date : 2024-11-13 eCollection Date: 2024-01-01 DOI:10.1080/14686996.2024.2418282
Tatsuo Hasegawa, Satoru Inoue, Seiji Tsuzuki, Sachio Horiuchi, Hiroyuki Matsui, Tomoharu Okada, Reiji Kumai, Koji Yonekura, Saori Maki-Yonekura
{"title":"Exploration and development of molecule-based printed electronics materials: an integrated approach using experimental, computational, and data sciences.","authors":"Tatsuo Hasegawa, Satoru Inoue, Seiji Tsuzuki, Sachio Horiuchi, Hiroyuki Matsui, Tomoharu Okada, Reiji Kumai, Koji Yonekura, Saori Maki-Yonekura","doi":"10.1080/14686996.2024.2418282","DOIUrl":null,"url":null,"abstract":"<p><p>The challenge in developing molecule-based electronic materials lies in the uncontrollable or unpredictable nature of their crystal structures, which are crucial for determining both electrical properties and thin-film formability. This review summarizes the findings of a research project focused on the systematic development of crystalline organic semiconductors (OSCs) and organic ferroelectrics by integrating experimental, computational, and data sciences. The key outcomes are as follows: 1) Data Science: We developed a method to identify promising materials from crystal structure databases, leading to the discovery of unique molecule-based ferroelectrics. 2) Computational Science: The origin of high layered crystallinity in π-core - alkyl-chain-linked molecules was clarified based on intermolecular interaction calculations. We proposed a stepwise structure optimization method tailored for layered OSCs. 3) Material Development: We developed various alkylated layered OSCs, which exhibit high mobility, heat resistance, and solubility. We discovered several unique phenomena, including frozen liquid crystal phases, significant polar/antipolar control, and phase control through mixing, leveraging the variability of alkyl chain length. We also developed molecule-based ferroelectrics showing peculiar ferroelectricity, including multiple polarization reversal, competing ferroelectric/antiferroelectric order, and spinner-type configurations with π-skeletons. 4) Advanced Structural Analysis: By combining cryo-electron microscopy and X-ray-free electron laser (XFEL), we enabled crystal structure analysis for ultrathin crystals that are usually difficult to analyse. 5) Device Development: Utilizing the self-organized growth of layered OSCs through solution processes, we developed a method to produce exceptionally clean semiconductor - insulator interfaces, achieving field-effect transistors that show sharp (near theoretical limit) and stable switching at low voltages.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"25 1","pages":"2418282"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626872/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2418282","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The challenge in developing molecule-based electronic materials lies in the uncontrollable or unpredictable nature of their crystal structures, which are crucial for determining both electrical properties and thin-film formability. This review summarizes the findings of a research project focused on the systematic development of crystalline organic semiconductors (OSCs) and organic ferroelectrics by integrating experimental, computational, and data sciences. The key outcomes are as follows: 1) Data Science: We developed a method to identify promising materials from crystal structure databases, leading to the discovery of unique molecule-based ferroelectrics. 2) Computational Science: The origin of high layered crystallinity in π-core - alkyl-chain-linked molecules was clarified based on intermolecular interaction calculations. We proposed a stepwise structure optimization method tailored for layered OSCs. 3) Material Development: We developed various alkylated layered OSCs, which exhibit high mobility, heat resistance, and solubility. We discovered several unique phenomena, including frozen liquid crystal phases, significant polar/antipolar control, and phase control through mixing, leveraging the variability of alkyl chain length. We also developed molecule-based ferroelectrics showing peculiar ferroelectricity, including multiple polarization reversal, competing ferroelectric/antiferroelectric order, and spinner-type configurations with π-skeletons. 4) Advanced Structural Analysis: By combining cryo-electron microscopy and X-ray-free electron laser (XFEL), we enabled crystal structure analysis for ultrathin crystals that are usually difficult to analyse. 5) Device Development: Utilizing the self-organized growth of layered OSCs through solution processes, we developed a method to produce exceptionally clean semiconductor - insulator interfaces, achieving field-effect transistors that show sharp (near theoretical limit) and stable switching at low voltages.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science and Technology of Advanced Materials
Science and Technology of Advanced Materials 工程技术-材料科学:综合
CiteScore
10.60
自引率
3.60%
发文量
52
审稿时长
4.8 months
期刊介绍: Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering. The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications. Of particular interest are research papers on the following topics: Materials informatics and materials genomics Materials for 3D printing and additive manufacturing Nanostructured/nanoscale materials and nanodevices Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications Materials for energy and environment, next-generation photovoltaics, and green technologies Advanced structural materials, materials for extreme conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信