Exploring the Inhibitory Potential of M. pendans Compounds Against N-Acetylglucosamine (Mur) Receptor: In Silico Insights Into Antibacterial Activity and Drug-Likeness.

Q2 Environmental Science
The Scientific World Journal Pub Date : 2024-11-30 eCollection Date: 2024-01-01 DOI:10.1155/tswj/3569811
Meirina Gartika, Sefren Geiner Tumilaar, Hendra Dian Adhita Dharsono, Denny Nurdin, Dikdik Kurnia
{"title":"Exploring the Inhibitory Potential of <i>M. pendans</i> Compounds Against <i>N</i>-Acetylglucosamine (Mur) Receptor: <i>In Silico</i> Insights Into Antibacterial Activity and Drug-Likeness.","authors":"Meirina Gartika, Sefren Geiner Tumilaar, Hendra Dian Adhita Dharsono, Denny Nurdin, Dikdik Kurnia","doi":"10.1155/tswj/3569811","DOIUrl":null,"url":null,"abstract":"<p><p>Oral diseases are often caused by bacterial infections, making the inhibition of receptors like <i>N</i>-acetylglucosamine critical in preventing bacterial formation. The plant <i>Myrmecodia pendans</i> (<i>M. pendans</i>) is known for its diverse bioactivities and may serve as a promising source for developing new antibacterial agents. This study employs in silico methods to predict the inhibitory mechanisms, pharmacokinetics, and drug-likeness of compounds isolated from <i>M. pendans</i>. Three compounds were evaluated for their inhibitory effects on the MurA and MurB receptors using the AutoDock4 molecular docking software, with visualizations performed using the BIOVIA Discovery Studio Visualizer. The binding affinities obtained for compounds <b>1</b>, <b>2</b>, and <b>3</b> to the MurA receptor were -9.42, -9.57, and -6.84 kcal/mol, respectively, while their binding affinities to the MurB receptor were -11.25, -10.55, and -8.69 kcal/mol. These affinities were found to be stronger than those of fosfomycin (benchmark compound) but weaker than the native ligands of the respective receptors. Key amino acid residues involved in the binding to MurA were identified as Cys115 and Asp305, while Ser82 and Asn83 were noted for MurB. In the ADMET prediction and drug-likeness analysis, some compounds met the necessary criteria, whereas others did not. Although all the three compounds demonstrated strong predicted inhibitory activity against MurA and MurB receptors, the analysis suggests that Compound <b>2</b> may hold the most promise as a potential antibacterial agent, warranting further investigation.</p>","PeriodicalId":22985,"journal":{"name":"The Scientific World Journal","volume":"2024 ","pages":"3569811"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628175/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Scientific World Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/tswj/3569811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Oral diseases are often caused by bacterial infections, making the inhibition of receptors like N-acetylglucosamine critical in preventing bacterial formation. The plant Myrmecodia pendans (M. pendans) is known for its diverse bioactivities and may serve as a promising source for developing new antibacterial agents. This study employs in silico methods to predict the inhibitory mechanisms, pharmacokinetics, and drug-likeness of compounds isolated from M. pendans. Three compounds were evaluated for their inhibitory effects on the MurA and MurB receptors using the AutoDock4 molecular docking software, with visualizations performed using the BIOVIA Discovery Studio Visualizer. The binding affinities obtained for compounds 1, 2, and 3 to the MurA receptor were -9.42, -9.57, and -6.84 kcal/mol, respectively, while their binding affinities to the MurB receptor were -11.25, -10.55, and -8.69 kcal/mol. These affinities were found to be stronger than those of fosfomycin (benchmark compound) but weaker than the native ligands of the respective receptors. Key amino acid residues involved in the binding to MurA were identified as Cys115 and Asp305, while Ser82 and Asn83 were noted for MurB. In the ADMET prediction and drug-likeness analysis, some compounds met the necessary criteria, whereas others did not. Although all the three compounds demonstrated strong predicted inhibitory activity against MurA and MurB receptors, the analysis suggests that Compound 2 may hold the most promise as a potential antibacterial agent, warranting further investigation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Scientific World Journal
The Scientific World Journal 综合性期刊-综合性期刊
CiteScore
5.60
自引率
0.00%
发文量
170
审稿时长
3.7 months
期刊介绍: The Scientific World Journal is a peer-reviewed, Open Access journal that publishes original research, reviews, and clinical studies covering a wide range of subjects in science, technology, and medicine. The journal is divided into 81 subject areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信