Investigating the mechanism of auxin-mediated fulvic acid-regulated root growth in Oryza sativa through physiological and transcriptomic analyses.

IF 3.6 3区 生物学 Q1 PLANT SCIENCES
Planta Pub Date : 2024-12-10 DOI:10.1007/s00425-024-04573-1
Yi Tang, Ke Chen, Yanan Guo, Tianrui Li, Na Kuang, Zhixuan Liu, Haona Yang
{"title":"Investigating the mechanism of auxin-mediated fulvic acid-regulated root growth in Oryza sativa through physiological and transcriptomic analyses.","authors":"Yi Tang, Ke Chen, Yanan Guo, Tianrui Li, Na Kuang, Zhixuan Liu, Haona Yang","doi":"10.1007/s00425-024-04573-1","DOIUrl":null,"url":null,"abstract":"<p><p>As rice is one of the most crucial staple food sources worldwide, enhancing rice yield is paramount for ensuring global food security. Fulvic acid (FA), serving as a plant growth promoter and organic fertilizer, holds significant practical importance in studying its impact on rice root growth for improving rice yield and quality. This study investigated the effects of different concentrations of FA on the growth of rice seedlings. The results indicated that 0.05 g/L FA could promote the growth of rice seedlings, while 0.5 g/L FA inhibited root growth, reduced cell activity and enzyme activity in the root tips, and accumulated reactive oxygen species in root cells. To further elucidate the molecular mechanisms underlying these effects, we performed transcriptomic analysis and found that auxin (Aux) may be involved in the growth process mediated by FA. Furthermore, transcriptome heatmap analysis revealed a significant upregulation of the Aux/indoleacetic acid (Aux/IAA) gene family after FA treatment, suggesting that this gene family plays a crucial role in the impact of FA on root growth. Additionally, by detecting endogenous Aux content and adding exogenous Aux inhibitors, we confirmed the involvement of FA in rice seedling root growth as well as in the synthesis and transduction pathway of Aux.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"261 1","pages":"9"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planta","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00425-024-04573-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

As rice is one of the most crucial staple food sources worldwide, enhancing rice yield is paramount for ensuring global food security. Fulvic acid (FA), serving as a plant growth promoter and organic fertilizer, holds significant practical importance in studying its impact on rice root growth for improving rice yield and quality. This study investigated the effects of different concentrations of FA on the growth of rice seedlings. The results indicated that 0.05 g/L FA could promote the growth of rice seedlings, while 0.5 g/L FA inhibited root growth, reduced cell activity and enzyme activity in the root tips, and accumulated reactive oxygen species in root cells. To further elucidate the molecular mechanisms underlying these effects, we performed transcriptomic analysis and found that auxin (Aux) may be involved in the growth process mediated by FA. Furthermore, transcriptome heatmap analysis revealed a significant upregulation of the Aux/indoleacetic acid (Aux/IAA) gene family after FA treatment, suggesting that this gene family plays a crucial role in the impact of FA on root growth. Additionally, by detecting endogenous Aux content and adding exogenous Aux inhibitors, we confirmed the involvement of FA in rice seedling root growth as well as in the synthesis and transduction pathway of Aux.

通过生理和转录组学分析研究生长素介导的黄腐酸调控水稻根系生长的机制。
由于水稻是世界上最重要的主食来源之一,提高水稻产量对确保全球粮食安全至关重要。黄腐酸(Fulvic acid, FA)作为植物生长促进剂和有机肥,研究其对水稻根系生长的影响对提高水稻产量和品质具有重要的现实意义。研究了不同浓度FA对水稻幼苗生长的影响。结果表明,0.05 g/L FA能促进水稻幼苗生长,0.5 g/L FA抑制根系生长,降低根尖细胞活性和酶活性,积累根细胞活性氧。为了进一步阐明这些作用的分子机制,我们进行了转录组学分析,发现生长素(Aux)可能参与了FA介导的生长过程。此外,转录组热图分析显示,FA处理后Aux/吲哚乙酸(Aux/IAA)基因家族显著上调,表明该基因家族在FA对根生长的影响中起关键作用。此外,通过检测内源Aux含量和添加外源Aux抑制剂,我们证实了FA参与水稻幼苗根系生长以及Aux的合成和转导途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Planta
Planta 生物-植物科学
CiteScore
7.20
自引率
2.30%
发文量
217
审稿时长
2.3 months
期刊介绍: Planta publishes timely and substantial articles on all aspects of plant biology. We welcome original research papers on any plant species. Areas of interest include biochemistry, bioenergy, biotechnology, cell biology, development, ecological and environmental physiology, growth, metabolism, morphogenesis, molecular biology, new methods, physiology, plant-microbe interactions, structural biology, and systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信