Comparison of early transcriptomic changes to diverse microbial volatiles in Arabidopsis thaliana.

IF 5.4 2区 生物学 Q1 PLANT SCIENCES
Ching-Han Chang, Chung-Chih Huang, Pei-Yu Su, Yi-Rong Li, Yu-Shuo Chen, Chong-Yue Wang, Yuan-Yun Zhang, Hieng-Ming Ting, Hao-Jen Huang
{"title":"Comparison of early transcriptomic changes to diverse microbial volatiles in Arabidopsis thaliana.","authors":"Ching-Han Chang, Chung-Chih Huang, Pei-Yu Su, Yi-Rong Li, Yu-Shuo Chen, Chong-Yue Wang, Yuan-Yun Zhang, Hieng-Ming Ting, Hao-Jen Huang","doi":"10.1111/ppl.70002","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial volatiles organic compounds (mVOCs) play diverse roles in modulating plant growth and stress tolerance. However, the molecular responses of plants to mVOCs are largely undescribed. In this study, we examined the early transcriptomic response of Arabidopsis thaliana to two plant growth-promoting mVOCs (PGPVs) and one plant growth-inhibiting mVOC (PGIV). Our phenotype analysis showed that PGPVs from Fusarium verticillioides and Simplicillium sympodiophorum promote plant growth by affecting different organs. In particular, F. verticillioides mVOCs promote plant growth in whole seedlings, while S. sympodiophorum mVOCs increase leaf surface area. Moreover, Arabidopsis treated with the two PGPVs exhibited different growth-associated molecular responses, which corresponded to the phenotype analysis results. For instance, the FAR1 family (regulates light-associated plant development) was upregulated by F. verticillioides mVOCs, while the LBD family (regulates leaf size and shape) was enriched among S. sympodiophorum mVOC-upregulated genes. Hierarchical clustering analysis further indicated that PGPVs induced expression of growth-associated genes and suppressed expression of defense-associated genes. In contrast to the PGPV-induced transcriptional effects, PGIVs caused downregulation of growth-associated genes with coincident upregulation of defense-associated genes. Furthermore, a transcription factor (TF) enrichment analysis suggested that HSFs, NACs and WRKYs might be core regulators in the plant response towards mVOCs. In particular, WRKYs might serve as integrating nodes to regulate salicylic acid- and jasmonic acid-mediated defense responses and growth-defense trade-offs. Overall, this study provides insights into the early molecular responses of plants after mVOC exposure and suggests that these molecular responses contribute to different phenotypic responses.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e70002"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70002","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial volatiles organic compounds (mVOCs) play diverse roles in modulating plant growth and stress tolerance. However, the molecular responses of plants to mVOCs are largely undescribed. In this study, we examined the early transcriptomic response of Arabidopsis thaliana to two plant growth-promoting mVOCs (PGPVs) and one plant growth-inhibiting mVOC (PGIV). Our phenotype analysis showed that PGPVs from Fusarium verticillioides and Simplicillium sympodiophorum promote plant growth by affecting different organs. In particular, F. verticillioides mVOCs promote plant growth in whole seedlings, while S. sympodiophorum mVOCs increase leaf surface area. Moreover, Arabidopsis treated with the two PGPVs exhibited different growth-associated molecular responses, which corresponded to the phenotype analysis results. For instance, the FAR1 family (regulates light-associated plant development) was upregulated by F. verticillioides mVOCs, while the LBD family (regulates leaf size and shape) was enriched among S. sympodiophorum mVOC-upregulated genes. Hierarchical clustering analysis further indicated that PGPVs induced expression of growth-associated genes and suppressed expression of defense-associated genes. In contrast to the PGPV-induced transcriptional effects, PGIVs caused downregulation of growth-associated genes with coincident upregulation of defense-associated genes. Furthermore, a transcription factor (TF) enrichment analysis suggested that HSFs, NACs and WRKYs might be core regulators in the plant response towards mVOCs. In particular, WRKYs might serve as integrating nodes to regulate salicylic acid- and jasmonic acid-mediated defense responses and growth-defense trade-offs. Overall, this study provides insights into the early molecular responses of plants after mVOC exposure and suggests that these molecular responses contribute to different phenotypic responses.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信