Convenient syntheses of isotopically labeled pyrimidine 2'-deoxynucleosides and their 5-hydroxy oxidation products.

IF 1.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yixuan Gao, Eric T Kool
{"title":"Convenient syntheses of isotopically labeled pyrimidine 2'-deoxynucleosides and their 5-hydroxy oxidation products.","authors":"Yixuan Gao, Eric T Kool","doi":"10.1080/15257770.2024.2437038","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrolytic and oxidative damage to pyrimidine nucleobases in DNA represents a significant source of mutations in the human genome. To better understand how these lesions are incorporated and repaired in human cells, it is desirable to have ready access to isotopically enriched nucleosides for use in isotope tracing and mass spectrometry-based quantification experiments. Here we report on improved syntheses of deoxyuridine, deoxycytidine, 5-hydroxydeoxyuridine, and 5-hydroxydeoxycytidine nucleosides labeled with <sup>13</sup>C and <sup>15</sup>N. Deoxyuridine was synthesized from uracil in a direct glycosylation reaction with excellent stereoselectivity without the need to reduce a ribonucleoside intermediate. Deoxyuridine was further converted to deoxycytidine using mild O4 activation conditions with high efficiency. Finally, we document the synthetic details of preparative oxidation of deoxyuridine and deoxycytidine to their 5-hydroxy counterparts. Overall, our protocols avoid hazardous reagents and tedious conditions found in previous methods.</p>","PeriodicalId":19343,"journal":{"name":"Nucleosides, Nucleotides & Nucleic Acids","volume":" ","pages":"1-23"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleosides, Nucleotides & Nucleic Acids","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15257770.2024.2437038","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrolytic and oxidative damage to pyrimidine nucleobases in DNA represents a significant source of mutations in the human genome. To better understand how these lesions are incorporated and repaired in human cells, it is desirable to have ready access to isotopically enriched nucleosides for use in isotope tracing and mass spectrometry-based quantification experiments. Here we report on improved syntheses of deoxyuridine, deoxycytidine, 5-hydroxydeoxyuridine, and 5-hydroxydeoxycytidine nucleosides labeled with 13C and 15N. Deoxyuridine was synthesized from uracil in a direct glycosylation reaction with excellent stereoselectivity without the need to reduce a ribonucleoside intermediate. Deoxyuridine was further converted to deoxycytidine using mild O4 activation conditions with high efficiency. Finally, we document the synthetic details of preparative oxidation of deoxyuridine and deoxycytidine to their 5-hydroxy counterparts. Overall, our protocols avoid hazardous reagents and tedious conditions found in previous methods.

方便合成同位素标记嘧啶2′-脱氧核苷及其5-羟基氧化产物。
DNA中嘧啶核碱基的水解和氧化损伤是人类基因组突变的重要来源。为了更好地了解这些病变是如何在人类细胞中整合和修复的,希望能够随时获得同位素富集的核苷,用于同位素示踪和基于质谱的定量实验。本文报道了用13C和15N标记的脱氧尿苷、脱氧胞苷、5-羟基脱氧尿苷和5-羟基脱氧胞苷核苷的改进合成。脱氧尿苷是由尿嘧啶直接糖基化反应合成的,具有良好的立体选择性,不需要减少核糖核苷中间体。在温和的O4活化条件下,脱氧尿苷进一步高效转化为脱氧胞苷。最后,我们记录了脱氧尿嘧啶和脱氧胞苷制备其5-羟基对应物的合成细节。总的来说,我们的方案避免了在以前的方法中发现的危险试剂和繁琐的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nucleosides, Nucleotides & Nucleic Acids
Nucleosides, Nucleotides & Nucleic Acids 生物-生化与分子生物学
CiteScore
2.60
自引率
7.70%
发文量
91
审稿时长
6 months
期刊介绍: Nucleosides, Nucleotides & Nucleic Acids publishes research articles, short notices, and concise, critical reviews of related topics that focus on the chemistry and biology of nucleosides, nucleotides, and nucleic acids. Complete with experimental details, this all-inclusive journal emphasizes the synthesis, biological activities, new and improved synthetic methods, and significant observations related to new compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信