Özüm Yildirim-Semerci, Rumeysa Bilginer-Kartal, Ahu Arslan-Yildiz
{"title":"Exploring the Use of Water-Extracted Flaxseed Hydrocolloids in Three-Dimensional Cell Culture.","authors":"Özüm Yildirim-Semerci, Rumeysa Bilginer-Kartal, Ahu Arslan-Yildiz","doi":"10.1089/ten.tec.2024.0293","DOIUrl":null,"url":null,"abstract":"<p><p>Plant-derived hydrocolloids offer promising prospects in biomedical applications. Among these, Flaxseed hydrocolloid (FSH) can form a soft, elastic, and biocompatible hydrocolloid with tunable viscosity and superior swelling capacity, making it an attractive scaffold. This study introduces a green extraction method for FSH, employing a single-step aqueous extraction process and fabrication of FSH scaffold. Despite growing interest, the pristine form of FSH has not been investigated for sustainable long-term three-dimensional (3D) cell culture. Here, FSH scaffolds were thoroughly characterized for their morphological, chemical, mechanical, and biological properties. 3D cell culture experiments were conducted using NIH-3T3 mouse fibroblast cells, and cell viability was assessed using live/dead and Alamar Blue assays. High cell viability was sustained for long term compared with 2D cell culture. Cell adhesion and 3D cellular morphology on FSH scaffold for 30 days were monitored by scanning electron microscopy analysis. Also, collagen type-I and F-actin expressions were analyzed by immunostaining after 30 days of culture, resulting in 5- and 4-fold increments of fluorescence intensity, respectively. Results indicate sustained cell viability in the long term and favorable cell-material interaction, demonstrating the potential of FSH as a scaffold. This study emphasizes the importance of the green extraction approach, improving the biocompatibility and functionality of FSH tissue engineering applications.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering. Part C, Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.tec.2024.0293","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Plant-derived hydrocolloids offer promising prospects in biomedical applications. Among these, Flaxseed hydrocolloid (FSH) can form a soft, elastic, and biocompatible hydrocolloid with tunable viscosity and superior swelling capacity, making it an attractive scaffold. This study introduces a green extraction method for FSH, employing a single-step aqueous extraction process and fabrication of FSH scaffold. Despite growing interest, the pristine form of FSH has not been investigated for sustainable long-term three-dimensional (3D) cell culture. Here, FSH scaffolds were thoroughly characterized for their morphological, chemical, mechanical, and biological properties. 3D cell culture experiments were conducted using NIH-3T3 mouse fibroblast cells, and cell viability was assessed using live/dead and Alamar Blue assays. High cell viability was sustained for long term compared with 2D cell culture. Cell adhesion and 3D cellular morphology on FSH scaffold for 30 days were monitored by scanning electron microscopy analysis. Also, collagen type-I and F-actin expressions were analyzed by immunostaining after 30 days of culture, resulting in 5- and 4-fold increments of fluorescence intensity, respectively. Results indicate sustained cell viability in the long term and favorable cell-material interaction, demonstrating the potential of FSH as a scaffold. This study emphasizes the importance of the green extraction approach, improving the biocompatibility and functionality of FSH tissue engineering applications.
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
Tissue Engineering Methods (Part C) presents innovative tools and assays in scaffold development, stem cells and biologically active molecules to advance the field and to support clinical translation. Part C publishes monthly.