Sebastian Hammer, Tristan L Britt, Laurenz Kremeyer, Maximilian Rödel, David Cai, Jens Pflaum, Bradley J Siwick
{"title":"Excimer formation in zinc-phthalocyanine revealed using ultrafast electron diffraction.","authors":"Sebastian Hammer, Tristan L Britt, Laurenz Kremeyer, Maximilian Rödel, David Cai, Jens Pflaum, Bradley J Siwick","doi":"10.1073/pnas.2411975121","DOIUrl":null,"url":null,"abstract":"<p><p>The formation of excited dimer states, so called excimers, is an important phenomenon in many organic molecular semiconductor solid state aggregates. In contrast to Frenkel exciton-polarons, an excimer is long-lived and energetically low-lying due to stabilization resulting from a substantial reorganization of the intermolecular geometry. Here, we show that ultrafast electron diffraction can follow the dynamics of solid-state excimer formation in polycrystalline thin films of a molecular semiconductor, revealing both the key reaction modes and the eventual structure of the emitting state. We study the prototypical organic semiconductor zinc-phthalocyanine (ZnPc) in its crystallographic <i>α</i>-phase as a model excimeric system. We show that the excimer forms in a two-step process starting with a fast dimerization (approx. 0.4 ps) followed by a subsequent slow shear-twist motion (14 ps) leading to an alignment of the <i>π</i>-systems of the involved monomers. This structural distortion persists well beyond 300 ps. Furthermore, we show that while the same excimer geometry is present in partially fluorinated derivatives of ZnPc, the formation kinematics slow down with increasing level of fluorination.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"121 51","pages":"e2411975121"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2411975121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The formation of excited dimer states, so called excimers, is an important phenomenon in many organic molecular semiconductor solid state aggregates. In contrast to Frenkel exciton-polarons, an excimer is long-lived and energetically low-lying due to stabilization resulting from a substantial reorganization of the intermolecular geometry. Here, we show that ultrafast electron diffraction can follow the dynamics of solid-state excimer formation in polycrystalline thin films of a molecular semiconductor, revealing both the key reaction modes and the eventual structure of the emitting state. We study the prototypical organic semiconductor zinc-phthalocyanine (ZnPc) in its crystallographic α-phase as a model excimeric system. We show that the excimer forms in a two-step process starting with a fast dimerization (approx. 0.4 ps) followed by a subsequent slow shear-twist motion (14 ps) leading to an alignment of the π-systems of the involved monomers. This structural distortion persists well beyond 300 ps. Furthermore, we show that while the same excimer geometry is present in partially fluorinated derivatives of ZnPc, the formation kinematics slow down with increasing level of fluorination.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.