Excimer formation in zinc-phthalocyanine revealed using ultrafast electron diffraction.

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Sebastian Hammer, Tristan L Britt, Laurenz Kremeyer, Maximilian Rödel, David Cai, Jens Pflaum, Bradley J Siwick
{"title":"Excimer formation in zinc-phthalocyanine revealed using ultrafast electron diffraction.","authors":"Sebastian Hammer, Tristan L Britt, Laurenz Kremeyer, Maximilian Rödel, David Cai, Jens Pflaum, Bradley J Siwick","doi":"10.1073/pnas.2411975121","DOIUrl":null,"url":null,"abstract":"<p><p>The formation of excited dimer states, so called excimers, is an important phenomenon in many organic molecular semiconductor solid state aggregates. In contrast to Frenkel exciton-polarons, an excimer is long-lived and energetically low-lying due to stabilization resulting from a substantial reorganization of the intermolecular geometry. Here, we show that ultrafast electron diffraction can follow the dynamics of solid-state excimer formation in polycrystalline thin films of a molecular semiconductor, revealing both the key reaction modes and the eventual structure of the emitting state. We study the prototypical organic semiconductor zinc-phthalocyanine (ZnPc) in its crystallographic <i>α</i>-phase as a model excimeric system. We show that the excimer forms in a two-step process starting with a fast dimerization (approx. 0.4 ps) followed by a subsequent slow shear-twist motion (14 ps) leading to an alignment of the <i>π</i>-systems of the involved monomers. This structural distortion persists well beyond 300 ps. Furthermore, we show that while the same excimer geometry is present in partially fluorinated derivatives of ZnPc, the formation kinematics slow down with increasing level of fluorination.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"121 51","pages":"e2411975121"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2411975121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The formation of excited dimer states, so called excimers, is an important phenomenon in many organic molecular semiconductor solid state aggregates. In contrast to Frenkel exciton-polarons, an excimer is long-lived and energetically low-lying due to stabilization resulting from a substantial reorganization of the intermolecular geometry. Here, we show that ultrafast electron diffraction can follow the dynamics of solid-state excimer formation in polycrystalline thin films of a molecular semiconductor, revealing both the key reaction modes and the eventual structure of the emitting state. We study the prototypical organic semiconductor zinc-phthalocyanine (ZnPc) in its crystallographic α-phase as a model excimeric system. We show that the excimer forms in a two-step process starting with a fast dimerization (approx. 0.4 ps) followed by a subsequent slow shear-twist motion (14 ps) leading to an alignment of the π-systems of the involved monomers. This structural distortion persists well beyond 300 ps. Furthermore, we show that while the same excimer geometry is present in partially fluorinated derivatives of ZnPc, the formation kinematics slow down with increasing level of fluorination.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信