Chlorophyll and growth performance of biological sand-fixing materials inoculated on sandy desert surface.

IF 2.1 4区 生物学 Q2 PLANT SCIENCES
Photosynthetica Pub Date : 2024-06-27 eCollection Date: 2024-01-01 DOI:10.32615/ps.2024.020
H R Ren, L Tao, J Ren, X C Ren
{"title":"Chlorophyll and growth performance of biological sand-fixing materials inoculated on sandy desert surface.","authors":"H R Ren, L Tao, J Ren, X C Ren","doi":"10.32615/ps.2024.020","DOIUrl":null,"url":null,"abstract":"<p><p>Desert biocrusts play an important role in the control of desertification and artificial inoculation can promote the formation and development of biocrusts. Physiological and growth responses of biocrusts inoculated on desert surfaces were investigated to assess the effect of mixture ratio, inoculation times, and water supply under laboratory conditions. The application of biological sand-fixing material prepared by cultivated algae crust and polymeric composites in a 1:1 ratio accelerated the most accumulation of chlorophyll <i>a</i> in 0.55 mg kg<sup>-1</sup>, thickness in 3.06 mm, and fresh mass in 0.69 g cm<sup>-1</sup>, was the most beneficial to formation and development of artificial biocrust. The water supply and cultivation time always significantly promoted the growth and accumulation of chlorophyll <i>a</i> and biomass under artificial cultivation and inoculation treatments. Artificial inoculation of biological sand-fixing material can lead to the formation of desert biocrust, which provides an engineering application method for desertification control.</p>","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"62 2","pages":"213-220"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613831/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthetica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/ps.2024.020","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Desert biocrusts play an important role in the control of desertification and artificial inoculation can promote the formation and development of biocrusts. Physiological and growth responses of biocrusts inoculated on desert surfaces were investigated to assess the effect of mixture ratio, inoculation times, and water supply under laboratory conditions. The application of biological sand-fixing material prepared by cultivated algae crust and polymeric composites in a 1:1 ratio accelerated the most accumulation of chlorophyll a in 0.55 mg kg-1, thickness in 3.06 mm, and fresh mass in 0.69 g cm-1, was the most beneficial to formation and development of artificial biocrust. The water supply and cultivation time always significantly promoted the growth and accumulation of chlorophyll a and biomass under artificial cultivation and inoculation treatments. Artificial inoculation of biological sand-fixing material can lead to the formation of desert biocrust, which provides an engineering application method for desertification control.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Photosynthetica
Photosynthetica 生物-植物科学
CiteScore
5.60
自引率
7.40%
发文量
55
审稿时长
3.8 months
期刊介绍: Photosynthetica publishes original scientific papers and brief communications, reviews on specialized topics, book reviews and announcements and reports covering wide range of photosynthesis research or research including photosynthetic parameters of both experimental and theoretical nature and dealing with physiology, biophysics, biochemistry, molecular biology on one side and leaf optics, stress physiology and ecology of photosynthesis on the other side. The language of journal is English (British or American). Papers should not be published or under consideration for publication elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信