Dominique O Riddell, John C W Hildyard, Rachel C M Harron, Dominic J Wells, Richard J Piercy
{"title":"Identification of reference microRNAs in skeletal muscle of a canine model of Duchenne muscular dystrophy.","authors":"Dominique O Riddell, John C W Hildyard, Rachel C M Harron, Dominic J Wells, Richard J Piercy","doi":"10.12688/wellcomeopenres.22481.2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease caused by mutations in the dystrophin gene. DE50-MD dogs are an animal model of DMD used as a final translational model for evaluation of promising treatments. MicroRNA (miR) expressions in the muscle of DE50-MD dogs represent potential biomarkers, but stable reference miRs must first be identified. The aim of this paper was to establish a panel of reference miRs for WT and DE50-MD dogs over a range of ages and muscle groups.</p><p><strong>Methods: </strong>RNA was extracted from WT and DE50-MD dog (N=6 per genotype) vastus lateralis muscle samples collected longitudinally at 3, 6, 9, 12, 15 and 18 months of age, and from muscles collected post-mortem (N=3 per genotype; cranial tibial, semimembranosus, lateral triceps and diaphragm). 87 RNAs were quantified in a subset of 6-month-old WT and DE50-MD muscles (N=4 per genotype) using the QIAcuity miFinder panel. GeNorm, BestKeeper and Normfinder were used to identify a candidate panel of the 8 most stable small RNAs, which were then quantified in all RNA samples, alongside the commonly used reference RNA snRNA U6.</p><p><strong>Results: </strong>The most stable miRs of this subset were used to normalise quantities of dystromiRs miR-1, miR-133a and miR-206, and fibromiR miR-214. MicroRNAs miR-191, let-7b, miR-125a and miR-15a were the most stable miRs tested, while snRNA U6 performed poorly. DystromiR expression, normalised to the geometric mean of the panel of reference miRs, was lower for miR-1 and miR-133a in DE50-MD compared to WT muscles, while miR-206 levels did not significantly differ between genotypes. FibromiR miR-214 was 2- to 4-fold higher in DE50-MD versus WT muscles.</p><p><strong>Conclusions: </strong>A normalisation factor derived from miR-191, let-7b, miR-125a and miR-15a is suitable for normalising miR expression data from WT and DE50-MD muscle over a range of ages and muscle types.</p>","PeriodicalId":23677,"journal":{"name":"Wellcome Open Research","volume":"9 ","pages":"362"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wellcome Open Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/wellcomeopenres.22481.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease caused by mutations in the dystrophin gene. DE50-MD dogs are an animal model of DMD used as a final translational model for evaluation of promising treatments. MicroRNA (miR) expressions in the muscle of DE50-MD dogs represent potential biomarkers, but stable reference miRs must first be identified. The aim of this paper was to establish a panel of reference miRs for WT and DE50-MD dogs over a range of ages and muscle groups.
Methods: RNA was extracted from WT and DE50-MD dog (N=6 per genotype) vastus lateralis muscle samples collected longitudinally at 3, 6, 9, 12, 15 and 18 months of age, and from muscles collected post-mortem (N=3 per genotype; cranial tibial, semimembranosus, lateral triceps and diaphragm). 87 RNAs were quantified in a subset of 6-month-old WT and DE50-MD muscles (N=4 per genotype) using the QIAcuity miFinder panel. GeNorm, BestKeeper and Normfinder were used to identify a candidate panel of the 8 most stable small RNAs, which were then quantified in all RNA samples, alongside the commonly used reference RNA snRNA U6.
Results: The most stable miRs of this subset were used to normalise quantities of dystromiRs miR-1, miR-133a and miR-206, and fibromiR miR-214. MicroRNAs miR-191, let-7b, miR-125a and miR-15a were the most stable miRs tested, while snRNA U6 performed poorly. DystromiR expression, normalised to the geometric mean of the panel of reference miRs, was lower for miR-1 and miR-133a in DE50-MD compared to WT muscles, while miR-206 levels did not significantly differ between genotypes. FibromiR miR-214 was 2- to 4-fold higher in DE50-MD versus WT muscles.
Conclusions: A normalisation factor derived from miR-191, let-7b, miR-125a and miR-15a is suitable for normalising miR expression data from WT and DE50-MD muscle over a range of ages and muscle types.
Wellcome Open ResearchBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
5.50
自引率
0.00%
发文量
426
审稿时长
1 weeks
期刊介绍:
Wellcome Open Research publishes scholarly articles reporting any basic scientific, translational and clinical research that has been funded (or co-funded) by Wellcome. Each publication must have at least one author who has been, or still is, a recipient of a Wellcome grant. Articles must be original (not duplications). All research, including clinical trials, systematic reviews, software tools, method articles, and many others, is welcome and will be published irrespective of the perceived level of interest or novelty; confirmatory and negative results, as well as null studies are all suitable. See the full list of article types here. All articles are published using a fully transparent, author-driven model: the authors are solely responsible for the content of their article. Invited peer review takes place openly after publication, and the authors play a crucial role in ensuring that the article is peer-reviewed by independent experts in a timely manner. Articles that pass peer review will be indexed in PubMed and elsewhere. Wellcome Open Research is an Open Research platform: all articles are published open access; the publishing and peer-review processes are fully transparent; and authors are asked to include detailed descriptions of methods and to provide full and easy access to source data underlying the results to improve reproducibility.