Distinct modulation of calcium-activated chloride channel TMEM16A by drug-binding sites.

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jae Won Roh, Heon Yung Gee, Brian Wainger, Woo Kyung Kim, Wook Lee, Joo Hyun Nam
{"title":"Distinct modulation of calcium-activated chloride channel TMEM16A by drug-binding sites.","authors":"Jae Won Roh, Heon Yung Gee, Brian Wainger, Woo Kyung Kim, Wook Lee, Joo Hyun Nam","doi":"10.1073/pnas.2314011121","DOIUrl":null,"url":null,"abstract":"<p><p>TMEM16A is a calcium-activated chloride channel with significant role in epithelial fluid secretion, sensory transduction, and smooth muscle contraction. Several TMEM16A inhibitors have been identified; however, their binding sites and inhibitory mechanisms remain unclear. Using magnolol and honokiol, the two regioisomeric inhibitors, as chemical probes, we have identified a drug-binding site distinct from the pore region, in TMEM16A, which is described here. With electrophysiology, unbiased molecular docking and clustering, molecular dynamics simulations, and experimental validation with mutant cycle analysis, we show that magnolol and honokiol utilize different drug-binding sites, pore and nonpore pockets. The pore blocker utilizes amino acids crucial for chloride passage, whereas the nonpore blocker allosterically modulates the pore residues to hinder ion permeation. Among 17 inhibitors tested, 11 were pore blockers and 6 were nonpore blockers, indicating the importance of this nonpore pocket. Our study provides insights into drug-binding mechanism in TMEM16A together with a rationale for future drug development.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"121 51","pages":"e2314011121"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2314011121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

TMEM16A is a calcium-activated chloride channel with significant role in epithelial fluid secretion, sensory transduction, and smooth muscle contraction. Several TMEM16A inhibitors have been identified; however, their binding sites and inhibitory mechanisms remain unclear. Using magnolol and honokiol, the two regioisomeric inhibitors, as chemical probes, we have identified a drug-binding site distinct from the pore region, in TMEM16A, which is described here. With electrophysiology, unbiased molecular docking and clustering, molecular dynamics simulations, and experimental validation with mutant cycle analysis, we show that magnolol and honokiol utilize different drug-binding sites, pore and nonpore pockets. The pore blocker utilizes amino acids crucial for chloride passage, whereas the nonpore blocker allosterically modulates the pore residues to hinder ion permeation. Among 17 inhibitors tested, 11 were pore blockers and 6 were nonpore blockers, indicating the importance of this nonpore pocket. Our study provides insights into drug-binding mechanism in TMEM16A together with a rationale for future drug development.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信