Predicting food insecurity in a pediatric population using the electronic health record.

IF 2.1 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
Journal of Clinical and Translational Science Pub Date : 2024-10-28 eCollection Date: 2024-01-01 DOI:10.1017/cts.2024.645
Joseph Rigdon, Kimberly Montez, Deepak Palakshappa, Callie Brown, Stephen M Downs, Laurie W Albertini, Alysha Taxter
{"title":"Predicting food insecurity in a pediatric population using the electronic health record.","authors":"Joseph Rigdon, Kimberly Montez, Deepak Palakshappa, Callie Brown, Stephen M Downs, Laurie W Albertini, Alysha Taxter","doi":"10.1017/cts.2024.645","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>More than 5 million children in the United States experience food insecurity (FI), yet little guidance exists regarding screening for FI. A prediction model of FI could be useful for healthcare systems and practices working to identify and address children with FI. Our objective was to predict FI using demographic, geographic, medical, and historic unmet health-related social needs data available within most electronic health records.</p><p><strong>Methods: </strong>This was a retrospective longitudinal cohort study of children evaluated in an academic pediatric primary care clinic and screened at least once for FI between January 2017 and August 2021. American Community Survey Data provided additional insight into neighborhood-level information such as home ownership and poverty level. Household FI was screened using two validated questions. Various combinations of predictor variables and modeling approaches, including logistic regression, random forest, and gradient-boosted machine, were used to build and validate prediction models.</p><p><strong>Results: </strong>A total of 25,214 encounters from 8521 unique patients were included, with FI present in 3820 (15%) encounters. Logistic regression with a 12-month look-back using census block group neighborhood variables showed the best performance in the test set (C-statistic 0.70, positive predictive value 0.92), had superior C-statistics to both random forest (0.65, <i>p</i> < 0.01) and gradient boosted machine (0.68, <i>p</i> = 0.01), and showed the best calibration. Results were nearly unchanged when coding missing data as a category.</p><p><strong>Conclusions: </strong>Although our models could predict FI, further work is needed to develop a more robust prediction model for pediatric FI.</p>","PeriodicalId":15529,"journal":{"name":"Journal of Clinical and Translational Science","volume":"8 1","pages":"e195"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626594/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/cts.2024.645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: More than 5 million children in the United States experience food insecurity (FI), yet little guidance exists regarding screening for FI. A prediction model of FI could be useful for healthcare systems and practices working to identify and address children with FI. Our objective was to predict FI using demographic, geographic, medical, and historic unmet health-related social needs data available within most electronic health records.

Methods: This was a retrospective longitudinal cohort study of children evaluated in an academic pediatric primary care clinic and screened at least once for FI between January 2017 and August 2021. American Community Survey Data provided additional insight into neighborhood-level information such as home ownership and poverty level. Household FI was screened using two validated questions. Various combinations of predictor variables and modeling approaches, including logistic regression, random forest, and gradient-boosted machine, were used to build and validate prediction models.

Results: A total of 25,214 encounters from 8521 unique patients were included, with FI present in 3820 (15%) encounters. Logistic regression with a 12-month look-back using census block group neighborhood variables showed the best performance in the test set (C-statistic 0.70, positive predictive value 0.92), had superior C-statistics to both random forest (0.65, p < 0.01) and gradient boosted machine (0.68, p = 0.01), and showed the best calibration. Results were nearly unchanged when coding missing data as a category.

Conclusions: Although our models could predict FI, further work is needed to develop a more robust prediction model for pediatric FI.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Clinical and Translational Science
Journal of Clinical and Translational Science MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
2.80
自引率
26.90%
发文量
437
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信