Examining individual- versus population-level social determinants of health in a cluster randomized trial of health coaches for patients with multiple chronic conditions.
Mary E Charlson, Martin T Wells, James Hollenberg, Rosio Ramos, Guillerma Maritza Martinez, Martin J Gerard, Andrea Cassells, T J Lin, Ilana Mittleman, Alice Eggleston, Jonathan N Tobin
{"title":"Examining individual- versus population-level social determinants of health in a cluster randomized trial of health coaches for patients with multiple chronic conditions.","authors":"Mary E Charlson, Martin T Wells, James Hollenberg, Rosio Ramos, Guillerma Maritza Martinez, Martin J Gerard, Andrea Cassells, T J Lin, Ilana Mittleman, Alice Eggleston, Jonathan N Tobin","doi":"10.1017/cts.2024.598","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Social determinants of health (SDOH) are an important contributor to health status and health outcomes. In this analysis, we compare SDOH measured both at the individual and population levels in patients with high comorbidity who receive primary care at Federally Qualified Health Centers in New York and Chicago and enrolled in the Tipping Points trial.</p><p><strong>Methods: </strong>We analyzed individual- and population-level measures of SDOH in 1,488 patients with high comorbidity (Charlson Comorbidity Index ≥ 4) enrolled in Tipping Points. At the individual level, we used a standardized patient-reported questionnaire. At the population level, we employed patient addresses to calculate the Social Deprivation Index (SDI) and Area Deprivation Index. Multivariable regressions were conducted in addition to qualitative feedback from stakeholders.</p><p><strong>Results: </strong>Individual-level SDOH are distinct from population-level measures. Significant component predictors of population SDI are being unhoused, unable to pay for utilities, and difficulty accessing medical transportation. Qualitative findings mirrored these results. High comorbidity patients report significant SDOH challenges at the individual level. Fitting a binomial generalized linear model, the comorbidity score is significantly predicted by the composite individual SDOH index (<i>p</i> < 0.0001) controlling for age and race/ethnicity.</p><p><strong>Conclusions: </strong>Individual- and population-level SDOH measures provide different risk assessments. The use of community-level SDI data is informative in the aggregate but should not be used to identify patients with individual unmet social needs. Health systems should implement a standardized individualized assessment of unmet SDOH needs and build strong, enduring partnerships with community-based organizations that can provide those services.</p>","PeriodicalId":15529,"journal":{"name":"Journal of Clinical and Translational Science","volume":"8 1","pages":"e191"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626581/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/cts.2024.598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Social determinants of health (SDOH) are an important contributor to health status and health outcomes. In this analysis, we compare SDOH measured both at the individual and population levels in patients with high comorbidity who receive primary care at Federally Qualified Health Centers in New York and Chicago and enrolled in the Tipping Points trial.
Methods: We analyzed individual- and population-level measures of SDOH in 1,488 patients with high comorbidity (Charlson Comorbidity Index ≥ 4) enrolled in Tipping Points. At the individual level, we used a standardized patient-reported questionnaire. At the population level, we employed patient addresses to calculate the Social Deprivation Index (SDI) and Area Deprivation Index. Multivariable regressions were conducted in addition to qualitative feedback from stakeholders.
Results: Individual-level SDOH are distinct from population-level measures. Significant component predictors of population SDI are being unhoused, unable to pay for utilities, and difficulty accessing medical transportation. Qualitative findings mirrored these results. High comorbidity patients report significant SDOH challenges at the individual level. Fitting a binomial generalized linear model, the comorbidity score is significantly predicted by the composite individual SDOH index (p < 0.0001) controlling for age and race/ethnicity.
Conclusions: Individual- and population-level SDOH measures provide different risk assessments. The use of community-level SDI data is informative in the aggregate but should not be used to identify patients with individual unmet social needs. Health systems should implement a standardized individualized assessment of unmet SDOH needs and build strong, enduring partnerships with community-based organizations that can provide those services.