Isolation, characterization of Bacillus subtilis and Bacillus amyloliquefaciens and validation of the potential probiotic efficacy on growth, immunity, and gut microbiota in hybrid sturgeon (Acipenser baerii ♀ × Acipenser schrenckii ♂).

IF 4.1 2区 农林科学 Q1 FISHERIES
Qingfeng Su, Xiaoqian Peng, Zihui Zhang, Zhongcheng Xiong, Bowu He, Pengfei Chu, Chengke Zhu
{"title":"Isolation, characterization of Bacillus subtilis and Bacillus amyloliquefaciens and validation of the potential probiotic efficacy on growth, immunity, and gut microbiota in hybrid sturgeon (Acipenser baerii ♀ × Acipenser schrenckii ♂).","authors":"Qingfeng Su, Xiaoqian Peng, Zihui Zhang, Zhongcheng Xiong, Bowu He, Pengfei Chu, Chengke Zhu","doi":"10.1016/j.fsi.2024.110081","DOIUrl":null,"url":null,"abstract":"<p><p>Probiotics are increasingly considered as an alternative to antibiotics in developing environmentally sustainable aquaculture practices. Hybrid sturgeon (Acipenser baerii ♀ × Acipenser schrenckii ♂), a globally popular species valued for its nutritional content and caviar, has limited research on host-associated probiotics. In this study, we isolated and identified Bacillus subtilis and Bacillus amyloliquefaciens from healthy hybrid sturgeon and assessed their impact on growth, immunity, gut microbiota, and transcriptome following an 8-week feeding trial. The isolated strains demonstrated strong production of protease, amylase, lipase, and cellulase, along with broad-spectrum pathogen inhibition, including Aeromonas veronii, Aeromonas sobria, and Yersinia ruckeri. Supplementation with B. subtilis and B. amyloliquefaciens significantly improved growth performance and increased survival rates against A. veronii infection. Mechanistically, probiotics altered gut microbiota composition, enhancing digestive functions. Transcriptome analysis further revealed that probiotic supplementation boosted immune response and protein digestion and absorption. These findings suggest that B. subtilis and B. amyloliquefaciens are promising probiotic candidates for the hybrid sturgeon industry, offering effective protection against A. veronii infection.</p>","PeriodicalId":12127,"journal":{"name":"Fish & shellfish immunology","volume":" ","pages":"110081"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish & shellfish immunology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fsi.2024.110081","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

Probiotics are increasingly considered as an alternative to antibiotics in developing environmentally sustainable aquaculture practices. Hybrid sturgeon (Acipenser baerii ♀ × Acipenser schrenckii ♂), a globally popular species valued for its nutritional content and caviar, has limited research on host-associated probiotics. In this study, we isolated and identified Bacillus subtilis and Bacillus amyloliquefaciens from healthy hybrid sturgeon and assessed their impact on growth, immunity, gut microbiota, and transcriptome following an 8-week feeding trial. The isolated strains demonstrated strong production of protease, amylase, lipase, and cellulase, along with broad-spectrum pathogen inhibition, including Aeromonas veronii, Aeromonas sobria, and Yersinia ruckeri. Supplementation with B. subtilis and B. amyloliquefaciens significantly improved growth performance and increased survival rates against A. veronii infection. Mechanistically, probiotics altered gut microbiota composition, enhancing digestive functions. Transcriptome analysis further revealed that probiotic supplementation boosted immune response and protein digestion and absorption. These findings suggest that B. subtilis and B. amyloliquefaciens are promising probiotic candidates for the hybrid sturgeon industry, offering effective protection against A. veronii infection.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Fish & shellfish immunology
Fish & shellfish immunology 农林科学-海洋与淡水生物学
CiteScore
7.50
自引率
19.10%
发文量
750
审稿时长
68 days
期刊介绍: Fish and Shellfish Immunology rapidly publishes high-quality, peer-refereed contributions in the expanding fields of fish and shellfish immunology. It presents studies on the basic mechanisms of both the specific and non-specific defense systems, the cells, tissues, and humoral factors involved, their dependence on environmental and intrinsic factors, response to pathogens, response to vaccination, and applied studies on the development of specific vaccines for use in the aquaculture industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信