The impact of mild episodic ketosis on microglia and hippocampal long-term depression in 5xFAD mice.

IF 2.5 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
FASEB bioAdvances Pub Date : 2024-10-23 eCollection Date: 2024-12-01 DOI:10.1096/fba.2024-00123
Jacopo Di Lucente, Jon J Ramsey, Lee-Way Jin, Izumi Maezawa
{"title":"The impact of mild episodic ketosis on microglia and hippocampal long-term depression in 5xFAD mice.","authors":"Jacopo Di Lucente, Jon J Ramsey, Lee-Way Jin, Izumi Maezawa","doi":"10.1096/fba.2024-00123","DOIUrl":null,"url":null,"abstract":"<p><p>Ketotherapeutics is a potential metabolic intervention for mitigating dementias; however, its mechanisms and optimal methods of application are not well understood. Our previous in vitro study showed that β-hydroxybutyrate (BHB), a major ketone body, reverses pathological features of amyloid-β oligomer (AβO)-activated microglia. Here we tested the in vivo effects of BHB on microglia and synaptic plasticity in the 5xFAD Alzheimer's disease (AD) mouse model. A short 1-week regimen of daily intraperitoneal injection of BHB (250 mg/kg), which induced brief and mild daily episodic ketosis, was sufficient to mitigate pro-inflammatory microglia activation and reduce brain amyloid-β deposition by enhancing phagocytosis. Remarkably, it mitigated the deficits of hippocampal long-term depression but not long-term potentiation, and this effect was linked to suppression of NLRP3 inflammasome-generated IL-1β. As ketogenic diets are known for poor compliance, our study opens the possibility for alternative approaches such as short-term BHB injections or dietary ketone esters that are less restrictive, potentially safer, and easier for compliance.</p>","PeriodicalId":12093,"journal":{"name":"FASEB bioAdvances","volume":"6 12","pages":"581-596"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618890/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FASEB bioAdvances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1096/fba.2024-00123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ketotherapeutics is a potential metabolic intervention for mitigating dementias; however, its mechanisms and optimal methods of application are not well understood. Our previous in vitro study showed that β-hydroxybutyrate (BHB), a major ketone body, reverses pathological features of amyloid-β oligomer (AβO)-activated microglia. Here we tested the in vivo effects of BHB on microglia and synaptic plasticity in the 5xFAD Alzheimer's disease (AD) mouse model. A short 1-week regimen of daily intraperitoneal injection of BHB (250 mg/kg), which induced brief and mild daily episodic ketosis, was sufficient to mitigate pro-inflammatory microglia activation and reduce brain amyloid-β deposition by enhancing phagocytosis. Remarkably, it mitigated the deficits of hippocampal long-term depression but not long-term potentiation, and this effect was linked to suppression of NLRP3 inflammasome-generated IL-1β. As ketogenic diets are known for poor compliance, our study opens the possibility for alternative approaches such as short-term BHB injections or dietary ketone esters that are less restrictive, potentially safer, and easier for compliance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
FASEB bioAdvances
FASEB bioAdvances Multiple-
CiteScore
5.40
自引率
3.70%
发文量
56
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信