{"title":"Using environmental and exercise physiology to address gender inequalities in climate change and occupational health research","authors":"Rebekah A. I. Lucas","doi":"10.1113/EP091456","DOIUrl":null,"url":null,"abstract":"<p>Climate change is a health-risk and health-inequity multiplier with excessive heat exposure a direct climate change impact already affecting the health and livelihood of billions globally. Women face greater risks and burdens from climate change impacts. Biological sex may or may not influence an individual's thermoregulatory capacity, heat tolerance or heat susceptibility. However at a population level, sex differences in physiological characteristics (anthropometrics, aerobic capacity, etc.) likely affect thermoregulatory capacity. Still, gender appears to play the most significant role in heat exposure and resulting health impacts. For climate change resilience and adaptation strategies to be effective, public health and occupational guidance/governance must be based on comprehensive and representative evidence. The current dearth of empirical evidence on how excessive heat exposure affects women prohibits this. Environmental and exercise physiology can help address this lack of empirical evidence by adhering to inclusive research guidelines. This paper is based on a symposium presentation given at Physiology 2023 in Harrogate, UK. Using a multi-year cohort study on industrial agricultural workers (the Adelante Initiative) as a case study, this review discusses the role of environmental and exercise physiology in generating inclusive research and evidence to inform occupational and public health guidance/governance for climate change resilience and adaptation, specifically heat exposure.</p>","PeriodicalId":12092,"journal":{"name":"Experimental Physiology","volume":"110 2","pages":"200-205"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782163/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Physiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1113/EP091456","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change is a health-risk and health-inequity multiplier with excessive heat exposure a direct climate change impact already affecting the health and livelihood of billions globally. Women face greater risks and burdens from climate change impacts. Biological sex may or may not influence an individual's thermoregulatory capacity, heat tolerance or heat susceptibility. However at a population level, sex differences in physiological characteristics (anthropometrics, aerobic capacity, etc.) likely affect thermoregulatory capacity. Still, gender appears to play the most significant role in heat exposure and resulting health impacts. For climate change resilience and adaptation strategies to be effective, public health and occupational guidance/governance must be based on comprehensive and representative evidence. The current dearth of empirical evidence on how excessive heat exposure affects women prohibits this. Environmental and exercise physiology can help address this lack of empirical evidence by adhering to inclusive research guidelines. This paper is based on a symposium presentation given at Physiology 2023 in Harrogate, UK. Using a multi-year cohort study on industrial agricultural workers (the Adelante Initiative) as a case study, this review discusses the role of environmental and exercise physiology in generating inclusive research and evidence to inform occupational and public health guidance/governance for climate change resilience and adaptation, specifically heat exposure.
期刊介绍:
Experimental Physiology publishes research papers that report novel insights into homeostatic and adaptive responses in health, as well as those that further our understanding of pathophysiological mechanisms in disease. We encourage papers that embrace the journal’s orientation of translation and integration, including studies of the adaptive responses to exercise, acute and chronic environmental stressors, growth and aging, and diseases where integrative homeostatic mechanisms play a key role in the response to and evolution of the disease process. Examples of such diseases include hypertension, heart failure, hypoxic lung disease, endocrine and neurological disorders. We are also keen to publish research that has a translational aspect or clinical application. Comparative physiology work that can be applied to aid the understanding human physiology is also encouraged.
Manuscripts that report the use of bioinformatic, genomic, molecular, proteomic and cellular techniques to provide novel insights into integrative physiological and pathophysiological mechanisms are welcomed.