Impact of repeated intranasal gentamicin irrigation on auditory brainstem evoked potentials in rats.

IF 1.7 4区 医学 Q4 NEUROSCIENCES
Yusra Mansour, LeAnn Haddad, Zachary Breeden, Randy J Kulesza
{"title":"Impact of repeated intranasal gentamicin irrigation on auditory brainstem evoked potentials in rats.","authors":"Yusra Mansour, LeAnn Haddad, Zachary Breeden, Randy J Kulesza","doi":"10.1007/s00221-024-06967-9","DOIUrl":null,"url":null,"abstract":"<p><p>Gentamicin is a bactericidal aminoglycoside antibiotic that broadly targets Gram-negative microbes. Both human and animal studies have shown that administration of gentamicin is ototoxic by several routes of administration and results in sensorineural hearing loss due to damaged hair cell at the base of the cochlea. However, gentamicin is also administered intranasally to treat sinusitis in humans, but no animal studies have examined ototoxicity of gentamicin administered via this route. We hypothesized that intranasal irrigation of gentamicin will result in ototoxicity and impaired auditory function similar to systemic delivery. We investigated this hypothesis in Sprague-Dawley rats that received intranasal irrigations of gentamicin or saline from postnatal day (P) 21-31. We examined auditory function by assessing brainstem auditory evoked potentials in response to both broadband clicks and pure tone-pips (4, 8, 16, 24 and 32 kHz) on P41. We found significant changes in auditory function in gentamicin-exposed animals. Specifically, gentamicin-exposed animals had significantly higher thresholds in response to both clicks and tone-pips. In response to broadband clicks, there were no changes in latency for waves I through IV. However, we found significantly longer wave and interwave latencies for all waves in response to the 24 kHz tone-pip. Together, these findings suggest that intranasal administration of gentamicin results in impaired auditory function consistent with other routes of delivery.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":"243 1","pages":"20"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00221-024-06967-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Gentamicin is a bactericidal aminoglycoside antibiotic that broadly targets Gram-negative microbes. Both human and animal studies have shown that administration of gentamicin is ototoxic by several routes of administration and results in sensorineural hearing loss due to damaged hair cell at the base of the cochlea. However, gentamicin is also administered intranasally to treat sinusitis in humans, but no animal studies have examined ototoxicity of gentamicin administered via this route. We hypothesized that intranasal irrigation of gentamicin will result in ototoxicity and impaired auditory function similar to systemic delivery. We investigated this hypothesis in Sprague-Dawley rats that received intranasal irrigations of gentamicin or saline from postnatal day (P) 21-31. We examined auditory function by assessing brainstem auditory evoked potentials in response to both broadband clicks and pure tone-pips (4, 8, 16, 24 and 32 kHz) on P41. We found significant changes in auditory function in gentamicin-exposed animals. Specifically, gentamicin-exposed animals had significantly higher thresholds in response to both clicks and tone-pips. In response to broadband clicks, there were no changes in latency for waves I through IV. However, we found significantly longer wave and interwave latencies for all waves in response to the 24 kHz tone-pip. Together, these findings suggest that intranasal administration of gentamicin results in impaired auditory function consistent with other routes of delivery.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
5.00%
发文量
228
审稿时长
1 months
期刊介绍: Founded in 1966, Experimental Brain Research publishes original contributions on many aspects of experimental research of the central and peripheral nervous system. The focus is on molecular, physiology, behavior, neurochemistry, developmental, cellular and molecular neurobiology, and experimental pathology relevant to general problems of cerebral function. The journal publishes original papers, reviews, and mini-reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信