Formulation of Morus alba extract loaded solid lipid nanoparticles: in silico, characterizations, and in vitro cytotoxicity study.

IF 2.4 4区 医学 Q3 CHEMISTRY, MEDICINAL
Narahari N Palei, Mohanalakshmi Sabapati, Vijayaraj S, Saptarshi Samajdar, Arghya K Dhar
{"title":"Formulation of <i>Morus alba</i> extract loaded solid lipid nanoparticles: <i>in silico</i>, characterizations, and <i>in vitro</i> cytotoxicity study.","authors":"Narahari N Palei, Mohanalakshmi Sabapati, Vijayaraj S, Saptarshi Samajdar, Arghya K Dhar","doi":"10.1080/03639045.2024.2439930","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to formulate <i>Morus alba</i> leaf extract (MAE) loaded solid lipid nanoparticles (SLNs) and investigate its cytotoxic potential using MDA-MB231 cell line.</p><p><strong>Significance: </strong>SLNs can protect MAE from degradation, enhance cytotoxicity potential, and making them suitable for various therapeutic areas.</p><p><strong>Methods: </strong>SLNs were developed using high-pressure homogenization method, and the formulations were optimized based on particle size, zeta potential, % entrapment efficiency (EE), and % cumulative drug release (CDR). The <i>in vitro</i> cytotoxic efficacy of MAE-loaded SLNs was evaluated through apoptosis assays and compared to that of free MAE.</p><p><strong>Results: </strong>The particle size, zeta potential, % EE, and % CDR of optimized SLNs were found 116.3 nm, -26.18 mV, 89.30%, and 79.4%, respectively. MAE-loaded SLNs demonstrated significantly greater cytotoxic effects than the MAE (<i>p</i> < 0.05). SLNs induced less inhibition in the G0/G1 phase but showed marked inhibition in the S phase (9.7 ± 1.7%) and G2/M phase (2.2 ± 0.6%), indicating effective disruption of DNA replication and cell division, with significant cytotoxicity compared to control cells. The percentage of total apoptosis was 72.49 ± 2.7% for MAE alone and 81.46 ± 2.9% for MAE loaded SLNs, demonstrating a notably higher apoptosis rate for the SLNs formulation (<i>p</i> < 0.05). These findings indicated that MAE loaded SLNs significantly enhance the apoptotic and cytotoxic impact compared to MAE.</p><p><strong>Conclusion: </strong>These results proved that MAE loaded SLNs as a promising nano carrier system to improve the therapeutic performance of MAE.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1-15"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development and Industrial Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2024.2439930","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study aimed to formulate Morus alba leaf extract (MAE) loaded solid lipid nanoparticles (SLNs) and investigate its cytotoxic potential using MDA-MB231 cell line.

Significance: SLNs can protect MAE from degradation, enhance cytotoxicity potential, and making them suitable for various therapeutic areas.

Methods: SLNs were developed using high-pressure homogenization method, and the formulations were optimized based on particle size, zeta potential, % entrapment efficiency (EE), and % cumulative drug release (CDR). The in vitro cytotoxic efficacy of MAE-loaded SLNs was evaluated through apoptosis assays and compared to that of free MAE.

Results: The particle size, zeta potential, % EE, and % CDR of optimized SLNs were found 116.3 nm, -26.18 mV, 89.30%, and 79.4%, respectively. MAE-loaded SLNs demonstrated significantly greater cytotoxic effects than the MAE (p < 0.05). SLNs induced less inhibition in the G0/G1 phase but showed marked inhibition in the S phase (9.7 ± 1.7%) and G2/M phase (2.2 ± 0.6%), indicating effective disruption of DNA replication and cell division, with significant cytotoxicity compared to control cells. The percentage of total apoptosis was 72.49 ± 2.7% for MAE alone and 81.46 ± 2.9% for MAE loaded SLNs, demonstrating a notably higher apoptosis rate for the SLNs formulation (p < 0.05). These findings indicated that MAE loaded SLNs significantly enhance the apoptotic and cytotoxic impact compared to MAE.

Conclusion: These results proved that MAE loaded SLNs as a promising nano carrier system to improve the therapeutic performance of MAE.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
82
审稿时长
4.5 months
期刊介绍: The aim of Drug Development and Industrial Pharmacy is to publish novel, original, peer-reviewed research manuscripts within relevant topics and research methods related to pharmaceutical research and development, and industrial pharmacy. Research papers must be hypothesis driven and emphasize innovative breakthrough topics in pharmaceutics and drug delivery. The journal will also consider timely critical review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信