Decoding a Cell's Fate: How Notch and receptor tyrosine kinase signals specify the Drosophila R7 photoreceptor.

IF 2.5 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY
Ronald A Arias, Andrew Tomlinson
{"title":"Decoding a Cell's Fate: How Notch and receptor tyrosine kinase signals specify the Drosophila R7 photoreceptor.","authors":"Ronald A Arias, Andrew Tomlinson","doi":"10.1016/j.ydbio.2024.12.001","DOIUrl":null,"url":null,"abstract":"<p><p>The process by which the Drosophila R7 photoreceptor is specified has become a classic model for understanding how cell-cell signals direct cell fates. In the R7 precursor cell, both the Notch and receptor tyrosine kinase (RTK) signaling pathways are active, and the information they encode directs the specification of the R7 photoreceptor identity. In this process, Notch performs three distinct functions: it both opposes and promotes the actions of the RTK pathway to specify the photoreceptor fate, and it determines the type of photoreceptor that is specified. The RTK pathway drives transcription of phyl - a gene expression necessary for photoreceptor specification. We show that Notch activity induces transcription of the yan gene which encodes a transcriptional repressor of phyl. This defines an antagonism between the two pathways, with RTK promoting and Notch opposing phyl transcription. We previously showed that Notch activity supplies Sevenless to the R7 precursor to allow the RTK pathway hyperactivation required to overcome the Notch repression, and we now identify the regulation of Yan activity as a site of integration of RTK and Notch signaling pathways. Once the cell is specified as a photoreceptor, the third Notch function then prevents seven-up (svp) transcription. The Svp transcription factor directs the R1/6 photoreceptor fate, and the prevention of its expression ensures the default R7 specification.</p>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":" ","pages":"21-29"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ydbio.2024.12.001","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The process by which the Drosophila R7 photoreceptor is specified has become a classic model for understanding how cell-cell signals direct cell fates. In the R7 precursor cell, both the Notch and receptor tyrosine kinase (RTK) signaling pathways are active, and the information they encode directs the specification of the R7 photoreceptor identity. In this process, Notch performs three distinct functions: it both opposes and promotes the actions of the RTK pathway to specify the photoreceptor fate, and it determines the type of photoreceptor that is specified. The RTK pathway drives transcription of phyl - a gene expression necessary for photoreceptor specification. We show that Notch activity induces transcription of the yan gene which encodes a transcriptional repressor of phyl. This defines an antagonism between the two pathways, with RTK promoting and Notch opposing phyl transcription. We previously showed that Notch activity supplies Sevenless to the R7 precursor to allow the RTK pathway hyperactivation required to overcome the Notch repression, and we now identify the regulation of Yan activity as a site of integration of RTK and Notch signaling pathways. Once the cell is specified as a photoreceptor, the third Notch function then prevents seven-up (svp) transcription. The Svp transcription factor directs the R1/6 photoreceptor fate, and the prevention of its expression ensures the default R7 specification.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Developmental biology
Developmental biology 生物-发育生物学
CiteScore
5.30
自引率
3.70%
发文量
182
审稿时长
1.5 months
期刊介绍: Developmental Biology (DB) publishes original research on mechanisms of development, differentiation, and growth in animals and plants at the molecular, cellular, genetic and evolutionary levels. Areas of particular emphasis include transcriptional control mechanisms, embryonic patterning, cell-cell interactions, growth factors and signal transduction, and regulatory hierarchies in developing plants and animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信