Yi Wang, Laiming Zhang, Hang Xiao, Xingqian Ye, Haibo Pan, Shiguo Chen
{"title":"Revisiting dietary proanthocyanidins on blood glucose homeostasis from a multi-scale structural perspective.","authors":"Yi Wang, Laiming Zhang, Hang Xiao, Xingqian Ye, Haibo Pan, Shiguo Chen","doi":"10.1016/j.crfs.2024.100926","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-dimensional studies have consistently indicated the benefits of dietary proanthocyanidins on blood glucose homeostasis through consumption of them from fruits, cereals and nuts. Proanthocyanidins from various sources possess different structures, but even the minor variations in structures influence their regulation on blood glucose, including the degree of polymerization, galloacylation at C3, number of hydroxyl groups in B ring and linkage type. Therefore, this Review details the role of three types of proanthocyanidins (procyanidins, prodelphinidins and propelargonidins) in blood glucose control and their underlying mechanisms, and various structural features contribute to. Due to the extremely low bioavailability, proanthocyanidins mainly ameliorate high blood glucose by luminal effects: inhibit enzyme activities, improve the structure of gut microbiota, and protect the intestinal barrier function. A few absorbed proanthocyanidins exert insulin-like effects on targeted organs. Prodelphinidin gallates exhibit greater hypoglycemic activities than others, due to their galloacylation at C3 and high amounts of hydroxyl groups in B ring. Because of different action pathways, comprehensive consideration on the degree of polymerization, linkage type and density of hydroxyl groups was required. Further understanding of these relationships can concrete diet therapeutic opportunities for proanthocyanidins.</p>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"9 ","pages":"100926"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626065/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.crfs.2024.100926","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-dimensional studies have consistently indicated the benefits of dietary proanthocyanidins on blood glucose homeostasis through consumption of them from fruits, cereals and nuts. Proanthocyanidins from various sources possess different structures, but even the minor variations in structures influence their regulation on blood glucose, including the degree of polymerization, galloacylation at C3, number of hydroxyl groups in B ring and linkage type. Therefore, this Review details the role of three types of proanthocyanidins (procyanidins, prodelphinidins and propelargonidins) in blood glucose control and their underlying mechanisms, and various structural features contribute to. Due to the extremely low bioavailability, proanthocyanidins mainly ameliorate high blood glucose by luminal effects: inhibit enzyme activities, improve the structure of gut microbiota, and protect the intestinal barrier function. A few absorbed proanthocyanidins exert insulin-like effects on targeted organs. Prodelphinidin gallates exhibit greater hypoglycemic activities than others, due to their galloacylation at C3 and high amounts of hydroxyl groups in B ring. Because of different action pathways, comprehensive consideration on the degree of polymerization, linkage type and density of hydroxyl groups was required. Further understanding of these relationships can concrete diet therapeutic opportunities for proanthocyanidins.
期刊介绍:
Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.