Cytochrome P450-derived Epoxyeicosatrienoic Acid, the Regulation of Cardiovascular-related Diseases, and the Implication for Pulmonary Hypertension.

IF 3.1 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Run Lan, Meng-Jie Zhang, Ke Liu, Fang-Fang Meng, Xiao-He Xu, Chen-Chen Wang, Meng-Qi Zhang, Yi Yan, Jie-Jian Kou, Lu-Ling Zhao, Yang-Yang He, Hong-Da Zhang
{"title":"Cytochrome P450-derived Epoxyeicosatrienoic Acid, the Regulation of Cardiovascular-related Diseases, and the Implication for Pulmonary Hypertension.","authors":"Run Lan, Meng-Jie Zhang, Ke Liu, Fang-Fang Meng, Xiao-He Xu, Chen-Chen Wang, Meng-Qi Zhang, Yi Yan, Jie-Jian Kou, Lu-Ling Zhao, Yang-Yang He, Hong-Da Zhang","doi":"10.1007/s10557-024-07655-0","DOIUrl":null,"url":null,"abstract":"<p><p>Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid (AA) into biologically active epoxyeicosatrienoic acids (EETs), forming a pivotal metabolic pathway (AA-CYP-EETs-soluble epoxide hydrolase-dihydroxyeicosatrienoic acids) implicated in the progression of various disorders. Inflammation is a key contributor to the onset and progression of numerous systemic diseases, and EETs play a significant role in mitigating inflammation. Extensive research highlights the cardiovascular protective effects of EETs, which include vasodilation, anti-hypertensive, and anti-atherosclerotic properties. Interestingly, the relatively less-explored third metabolic pathway of AA exhibits both pro-proliferative and anti-apoptotic effects in endothelial cells and smooth muscle cells. Recent studies have shown elevated levels of EETs catalyzed by CYP epoxygenases in human tumors, promoting tumor progression and metastasis-phenomena closely related to the disease progression in pulmonary hypertension (PH). This review explores the current understanding of the regulatory functions of CYP-derived EETs in cardiovascular diseases and seeks to elucidate their potential implications in PH. Ultimately, understanding the multifaceted roles of EETs may help identify novel therapeutic targets for both cardiovascular diseases and PH.</p>","PeriodicalId":9557,"journal":{"name":"Cardiovascular Drugs and Therapy","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Drugs and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10557-024-07655-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid (AA) into biologically active epoxyeicosatrienoic acids (EETs), forming a pivotal metabolic pathway (AA-CYP-EETs-soluble epoxide hydrolase-dihydroxyeicosatrienoic acids) implicated in the progression of various disorders. Inflammation is a key contributor to the onset and progression of numerous systemic diseases, and EETs play a significant role in mitigating inflammation. Extensive research highlights the cardiovascular protective effects of EETs, which include vasodilation, anti-hypertensive, and anti-atherosclerotic properties. Interestingly, the relatively less-explored third metabolic pathway of AA exhibits both pro-proliferative and anti-apoptotic effects in endothelial cells and smooth muscle cells. Recent studies have shown elevated levels of EETs catalyzed by CYP epoxygenases in human tumors, promoting tumor progression and metastasis-phenomena closely related to the disease progression in pulmonary hypertension (PH). This review explores the current understanding of the regulatory functions of CYP-derived EETs in cardiovascular diseases and seeks to elucidate their potential implications in PH. Ultimately, understanding the multifaceted roles of EETs may help identify novel therapeutic targets for both cardiovascular diseases and PH.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiovascular Drugs and Therapy
Cardiovascular Drugs and Therapy 医学-心血管系统
CiteScore
8.30
自引率
0.00%
发文量
110
审稿时长
4.5 months
期刊介绍: Designed to objectively cover the process of bench to bedside development of cardiovascular drug, device and cell therapy, and to bring you the information you need most in a timely and useful format, Cardiovascular Drugs and Therapy takes a fresh and energetic look at advances in this dynamic field. Homing in on the most exciting work being done on new therapeutic agents, Cardiovascular Drugs and Therapy focusses on developments in atherosclerosis, hyperlipidemia, diabetes, ischemic syndromes and arrhythmias. The Journal is an authoritative source of current and relevant information that is indispensable for basic and clinical investigators aiming for novel, breakthrough research as well as for cardiologists seeking to best serve their patients. Providing you with a single, concise reference tool acknowledged to be among the finest in the world, Cardiovascular Drugs and Therapy is listed in Web of Science and PubMed/Medline among other abstracting and indexing services. The regular articles and frequent special topical issues equip you with an up-to-date source defined by the need for accurate information on an ever-evolving field. Cardiovascular Drugs and Therapy is a careful and accurate guide through the maze of new products and therapies which furnishes you with the details on cardiovascular pharmacology that you will refer to time and time again.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信