The power of effect size stabilization.

IF 4.6 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL
Benjamin Kowialiewski
{"title":"The power of effect size stabilization.","authors":"Benjamin Kowialiewski","doi":"10.3758/s13428-024-02549-3","DOIUrl":null,"url":null,"abstract":"<p><p>Determining an appropriate sample size in psychological experiments is a common challenge, requiring a balance between maximizing the chance of detecting a true effect (minimizing false negatives) and minimizing the risk of observing an effect where none exists (minimizing false positives). A recent study proposes using effect size stabilization, a form of optional stopping, to define sample size without increasing the risk of false positives. In effect size stabilization, researchers monitor the effect size of their samples throughout the sampling process and stop sampling when the effect no longer varies beyond predefined thresholds. This study aims to improve our understanding of effect size stabilization properties. Simulations involving effect size stabilization are presented, with parametric modulation of the true effect in the population and the strictness of the stabilization rule. As previously demonstrated, the results indicate that optional stopping based on effect-size stabilization consistently yields unbiased samples over the long run. However, simulations also reveal that effect size stabilization does not guarantee the detection of a true effect in the population. Consequently, researchers adopting effect size stabilization put themselves at risk of increasing type 2 error probability. Instead of using effect-size stabilization procedures for testing, researchers should use them to reach accurate parameter estimates.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":"57 1","pages":"7"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-024-02549-3","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Determining an appropriate sample size in psychological experiments is a common challenge, requiring a balance between maximizing the chance of detecting a true effect (minimizing false negatives) and minimizing the risk of observing an effect where none exists (minimizing false positives). A recent study proposes using effect size stabilization, a form of optional stopping, to define sample size without increasing the risk of false positives. In effect size stabilization, researchers monitor the effect size of their samples throughout the sampling process and stop sampling when the effect no longer varies beyond predefined thresholds. This study aims to improve our understanding of effect size stabilization properties. Simulations involving effect size stabilization are presented, with parametric modulation of the true effect in the population and the strictness of the stabilization rule. As previously demonstrated, the results indicate that optional stopping based on effect-size stabilization consistently yields unbiased samples over the long run. However, simulations also reveal that effect size stabilization does not guarantee the detection of a true effect in the population. Consequently, researchers adopting effect size stabilization put themselves at risk of increasing type 2 error probability. Instead of using effect-size stabilization procedures for testing, researchers should use them to reach accurate parameter estimates.

效应大小稳定的力量。
在心理学实验中确定合适的样本量是一项常见的挑战,需要在最大限度地发现真实效应的机会(最大限度地减少假阴性)和最大限度地减少观察到不存在的效应的风险(最大限度地减少假阳性)之间取得平衡。最近的一项研究建议使用效应大小稳定(一种可选停止的形式)来定义样本量,而不会增加假阳性的风险。在效应大小稳定中,研究人员在整个采样过程中监测样本的效应大小,当影响不再超过预定义的阈值时停止采样。本研究旨在提高我们对效应大小稳定特性的理解。给出了涉及效应大小稳定化的仿真,在总体中对真实效应进行了参数调制,并给出了严格的稳定化规则。如前所述,结果表明,基于效应大小稳定的可选停止在长期运行中始终产生无偏样本。然而,模拟也表明,效应大小稳定并不能保证在群体中检测到真正的效应。因此,采用效应大小稳定化的研究人员将自己置于增加第2类错误概率的风险中。研究人员应该使用它们来达到准确的参数估计,而不是使用效应尺寸稳定程序进行测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信