Fate and Effects of Heavy Metals in Fishes: Antioxidant Defense System, miRNA/Gene Expression Response, and Histopathological Reproductive Manifestations.
Rayees Ahmad Bhat, Absar Alam, Dharm Nath Jha, Vikas Kumar, Jeetendra Kumar, Venkatesh Ramrao Thakur, Basanta Kumar Das
{"title":"Fate and Effects of Heavy Metals in Fishes: Antioxidant Defense System, miRNA/Gene Expression Response, and Histopathological Reproductive Manifestations.","authors":"Rayees Ahmad Bhat, Absar Alam, Dharm Nath Jha, Vikas Kumar, Jeetendra Kumar, Venkatesh Ramrao Thakur, Basanta Kumar Das","doi":"10.1007/s12011-024-04478-w","DOIUrl":null,"url":null,"abstract":"<p><p>Heavy metal pollution is a major environmental concern and in particular for aquatic ecosystems. With heavy metals exceeding safe and recommended limits, they pose significant threats to the environment and its inhabitants, including fish. Heavy metals, when accumulated in the different organs of the fish, result in toxicity in fish by producing reactive oxygen species (ROS) through the generation of oxidizing radicals. This oxidative stress mechanism is a key factor in the detrimental effects of heavy metal pollution on aquatic life. Heavy metal exposure profoundly affects fish behavior and physiology. In this review, an attempt was made to report the effects of heavy metals on fish physiology, focusing on toxicological effects on antioxidant enzymes, microRNAs (miRNAs) and molecular genetic responses, histopathology of organs, and underlying molecular mechanisms. This review also highlighted the heavy metal impact on fish gonads (testes and ovaries) and the hormones associated with it. The detection methods and the incorporation of latest developments in AI-based technology for the detection of heavy metals are also included in this review. Understanding the above effects is important for assessing the ecological impact of heavy metal pollution and developing strategies to mitigate its adverse effects on aquatic life. Understanding the consequences listed above is important for analyzing the ecological impact of heavy metal pollution and devising measures to reduce its negative effects on aquatic life and human health.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-024-04478-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Heavy metal pollution is a major environmental concern and in particular for aquatic ecosystems. With heavy metals exceeding safe and recommended limits, they pose significant threats to the environment and its inhabitants, including fish. Heavy metals, when accumulated in the different organs of the fish, result in toxicity in fish by producing reactive oxygen species (ROS) through the generation of oxidizing radicals. This oxidative stress mechanism is a key factor in the detrimental effects of heavy metal pollution on aquatic life. Heavy metal exposure profoundly affects fish behavior and physiology. In this review, an attempt was made to report the effects of heavy metals on fish physiology, focusing on toxicological effects on antioxidant enzymes, microRNAs (miRNAs) and molecular genetic responses, histopathology of organs, and underlying molecular mechanisms. This review also highlighted the heavy metal impact on fish gonads (testes and ovaries) and the hormones associated with it. The detection methods and the incorporation of latest developments in AI-based technology for the detection of heavy metals are also included in this review. Understanding the above effects is important for assessing the ecological impact of heavy metal pollution and developing strategies to mitigate its adverse effects on aquatic life. Understanding the consequences listed above is important for analyzing the ecological impact of heavy metal pollution and devising measures to reduce its negative effects on aquatic life and human health.
期刊介绍:
Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.