Synthesis, anticancer evaluation, preliminary mechanism study of novel 1, 2, 3-triazole-piperlongumine derivatives.

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED
Nianlin Feng, Xuemei Qiu, Fulian Li, Yue Zhou, Chengpeng Li, Bingqian Liu, Jiao Meng, Song Bai, Zhurui Li, Danping Chen, Zhenchao Wang
{"title":"Synthesis, anticancer evaluation, preliminary mechanism study of novel 1, 2, 3-triazole-piperlongumine derivatives.","authors":"Nianlin Feng, Xuemei Qiu, Fulian Li, Yue Zhou, Chengpeng Li, Bingqian Liu, Jiao Meng, Song Bai, Zhurui Li, Danping Chen, Zhenchao Wang","doi":"10.1007/s11030-024-11021-5","DOIUrl":null,"url":null,"abstract":"<p><p>Piperlongumine, a natural product from traditional Chinese medicine, shows promising antitumor effects but suffers from high toxicity. In this study, X and Q series Piperlongumine derivatives containing 1, 2, 3-triazole were designed and synthesized using the principle of molecular hybridization. The antitumor activity of these target compounds was evaluated, revealing significant activity compared to piperlongumine across four cancer cell lines. The structure-activity relationship of these compounds was analyzed using 3D-QSAR. Among these derivatives, compound 6Q demonstrated the highest antitumor activity against human chronic myeloid leukemia (K562) cells, with an IC<sub>50</sub> value of 0.31 μM, low toxicity to normal cells, and a selectivity index (SI) of 11.2. Further in vitro experiments confirmed that 6Q induced apoptosis in K562 cells by disrupting mitochondrial membrane potential, activating the MAPK signaling pathway, and causing cell cycle arrest in the G2/M phase. These findings underscored the potential of the natural product derivative 6Q as a promising candidate for further development in cancer therapy.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11021-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Piperlongumine, a natural product from traditional Chinese medicine, shows promising antitumor effects but suffers from high toxicity. In this study, X and Q series Piperlongumine derivatives containing 1, 2, 3-triazole were designed and synthesized using the principle of molecular hybridization. The antitumor activity of these target compounds was evaluated, revealing significant activity compared to piperlongumine across four cancer cell lines. The structure-activity relationship of these compounds was analyzed using 3D-QSAR. Among these derivatives, compound 6Q demonstrated the highest antitumor activity against human chronic myeloid leukemia (K562) cells, with an IC50 value of 0.31 μM, low toxicity to normal cells, and a selectivity index (SI) of 11.2. Further in vitro experiments confirmed that 6Q induced apoptosis in K562 cells by disrupting mitochondrial membrane potential, activating the MAPK signaling pathway, and causing cell cycle arrest in the G2/M phase. These findings underscored the potential of the natural product derivative 6Q as a promising candidate for further development in cancer therapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信