Integrating traditional QSAR and read-across-based regression models for predicting potential anti-leishmanial azole compounds.

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED
Rajat Nandi, Anupama Sharma, Ananya Priya, Diwakar Kumar
{"title":"Integrating traditional QSAR and read-across-based regression models for predicting potential anti-leishmanial azole compounds.","authors":"Rajat Nandi, Anupama Sharma, Ananya Priya, Diwakar Kumar","doi":"10.1007/s11030-024-11070-w","DOIUrl":null,"url":null,"abstract":"<p><p>Leishmaniasis, a neglected tropical disease caused by various Leishmania species, poses a significant global health challenge, especially in resource-limited regions. Visceral Leishmaniasis (VL) stands out among its severe manifestations, and current drug therapies have limitations, necessitating the exploration of new, cost-effective treatments. This study utilized a comprehensive computational workflow, integrating traditional 2D-QSAR, q-RASAR, and molecular docking to identify novel anti-leishmanial compounds, with a focus on Glycyl-tRNA Synthetase (LdGlyRS) as a promising drug target. A feature selection process combining Genetic Function Approximation (GFA)-Lasso with Multiple Linear Regression (MLR) was used to characterize 99 azole compounds across ten structural classes. The baseline MLR model (MOD1), containing seven simple and interpretable 2D features, exhibited robust predictive capabilities, achieving an R<sup>2</sup><sub>train</sub> value of 0.82 and an R<sup>2</sup><sub>test</sub> value of 0.87. To further enhance prediction accuracy, three qualified single models (two MLR and one q-RASAR) were used to construct three consensus models (CMs), with CM2 (MAE<sub>test</sub> = 0.127) demonstrating significantly higher prediction accuracy for test compounds than the MOD1. Subsequently, Support Vector Regression (SVR) and Boosting yielded 0.88 (R<sup>2</sup><sub>train</sub>), 0.86 (R<sup>2</sup><sub>test</sub>), 0.92 (R<sup>2</sup><sub>train</sub>), and 0.82 (R<sup>2</sup><sub>test</sub>), respectively. Molecular docking highlighted interactions of potent azoles within the QSAR dataset with critical residues in the LdGlyRS active site (Arg226 and Glu350), emphasizing their inhibitory potential. Furthermore, the pIC50 values of an accurate external set of 2000 azole compounds from the ZINC20 database were simultaneously predicted by CM2 + SVR + Boosting models and docked against the LdGlyRS, which identified Bazedoxifene, Talmetacin, Pyrvinium, Enzastaurin as leading FDA candidates, whereas three novel compounds with the database code ZINC000001153734, ZINC000011934652, and ZINC000009942262 displayed stable docked interactions and favourable ADMET assessments. Subsequently, Molecular Dynamics (MD) simulations for 100 ns were conducted to validate the findings further, offering enhanced insights into the stability and dynamic behaviour of the ligand-protein complexes. The integrated approach of this study underscores the efficacy of 2D-QSAR modelling. It identifies LdGlyRS as a promising leishmaniasis target, offering a robust strategy for discovering and optimizing anti-leishmanial compounds to address the critical need for improved treatments.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11070-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Leishmaniasis, a neglected tropical disease caused by various Leishmania species, poses a significant global health challenge, especially in resource-limited regions. Visceral Leishmaniasis (VL) stands out among its severe manifestations, and current drug therapies have limitations, necessitating the exploration of new, cost-effective treatments. This study utilized a comprehensive computational workflow, integrating traditional 2D-QSAR, q-RASAR, and molecular docking to identify novel anti-leishmanial compounds, with a focus on Glycyl-tRNA Synthetase (LdGlyRS) as a promising drug target. A feature selection process combining Genetic Function Approximation (GFA)-Lasso with Multiple Linear Regression (MLR) was used to characterize 99 azole compounds across ten structural classes. The baseline MLR model (MOD1), containing seven simple and interpretable 2D features, exhibited robust predictive capabilities, achieving an R2train value of 0.82 and an R2test value of 0.87. To further enhance prediction accuracy, three qualified single models (two MLR and one q-RASAR) were used to construct three consensus models (CMs), with CM2 (MAEtest = 0.127) demonstrating significantly higher prediction accuracy for test compounds than the MOD1. Subsequently, Support Vector Regression (SVR) and Boosting yielded 0.88 (R2train), 0.86 (R2test), 0.92 (R2train), and 0.82 (R2test), respectively. Molecular docking highlighted interactions of potent azoles within the QSAR dataset with critical residues in the LdGlyRS active site (Arg226 and Glu350), emphasizing their inhibitory potential. Furthermore, the pIC50 values of an accurate external set of 2000 azole compounds from the ZINC20 database were simultaneously predicted by CM2 + SVR + Boosting models and docked against the LdGlyRS, which identified Bazedoxifene, Talmetacin, Pyrvinium, Enzastaurin as leading FDA candidates, whereas three novel compounds with the database code ZINC000001153734, ZINC000011934652, and ZINC000009942262 displayed stable docked interactions and favourable ADMET assessments. Subsequently, Molecular Dynamics (MD) simulations for 100 ns were conducted to validate the findings further, offering enhanced insights into the stability and dynamic behaviour of the ligand-protein complexes. The integrated approach of this study underscores the efficacy of 2D-QSAR modelling. It identifies LdGlyRS as a promising leishmaniasis target, offering a robust strategy for discovering and optimizing anti-leishmanial compounds to address the critical need for improved treatments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信