Potential role of meiofauna in bioremediation: results from a microcosm experiment

IF 5.8 3区 环境科学与生态学 0 ENVIRONMENTAL SCIENCES
Hanan M. Mitwally, Paul A. Montagna, Amany A. Ismael
{"title":"Potential role of meiofauna in bioremediation: results from a microcosm experiment","authors":"Hanan M. Mitwally,&nbsp;Paul A. Montagna,&nbsp;Amany A. Ismael","doi":"10.1007/s11356-024-35526-6","DOIUrl":null,"url":null,"abstract":"<div><p>Meiofauna can act as remediation organisms by stimulating microphytobenthos, sequestering carbon dioxide, and degrading organic debris. Sediments from two basins in Lake Mariut, Egypt, which had undergone multiple rounds of restoration, were used in microcosm experiments to assess the role of meiofauna in organic matter degradation. Treatments included sediments with and without fauna, and four chlorophyll-a additions (0.002, 0.035, and 0.005 mg/ml, with 0.000 mg/ml as the reference). Meiofauna, chlorophyll-a, and organic matter were measured over two 8-month periods in 2014. Most treatments exhibited a rapid loss of organic matter, reducing organic content by two to eight times by study end. By the end, meiofaunal populations increased one- to 13-fold in microcosms with algae additions of 0.035 and 0.005 mg/ml chlorophyll-a in the Main and Northwest basins but had no change in those with 0.002 and zero mg/ml. Meiofauna abundance rose with rising temperature and oxygen levels, while organic matter declined. There was no correlation between chlorophyll-a levels and meiofauna abundance indicating that meiofauna likely play a role in the aerobic decomposition of organic matter at high temperatures. The meiofauna contribute to the diversity of ecosystems and have a potential role in ecosystem processes; therefore, conservation efforts should also include meiofauna.</p></div>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":"31 59","pages":"67070 - 67092"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11356-024-35526-6","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Meiofauna can act as remediation organisms by stimulating microphytobenthos, sequestering carbon dioxide, and degrading organic debris. Sediments from two basins in Lake Mariut, Egypt, which had undergone multiple rounds of restoration, were used in microcosm experiments to assess the role of meiofauna in organic matter degradation. Treatments included sediments with and without fauna, and four chlorophyll-a additions (0.002, 0.035, and 0.005 mg/ml, with 0.000 mg/ml as the reference). Meiofauna, chlorophyll-a, and organic matter were measured over two 8-month periods in 2014. Most treatments exhibited a rapid loss of organic matter, reducing organic content by two to eight times by study end. By the end, meiofaunal populations increased one- to 13-fold in microcosms with algae additions of 0.035 and 0.005 mg/ml chlorophyll-a in the Main and Northwest basins but had no change in those with 0.002 and zero mg/ml. Meiofauna abundance rose with rising temperature and oxygen levels, while organic matter declined. There was no correlation between chlorophyll-a levels and meiofauna abundance indicating that meiofauna likely play a role in the aerobic decomposition of organic matter at high temperatures. The meiofauna contribute to the diversity of ecosystems and have a potential role in ecosystem processes; therefore, conservation efforts should also include meiofauna.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
17.20%
发文量
6549
审稿时长
3.8 months
期刊介绍: Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes: - Terrestrial Biology and Ecology - Aquatic Biology and Ecology - Atmospheric Chemistry - Environmental Microbiology/Biobased Energy Sources - Phytoremediation and Ecosystem Restoration - Environmental Analyses and Monitoring - Assessment of Risks and Interactions of Pollutants in the Environment - Conservation Biology and Sustainable Agriculture - Impact of Chemicals/Pollutants on Human and Animal Health It reports from a broad interdisciplinary outlook.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信