Zhiquan Xiang, Yijie Zhang, Zhuowei Shen, Dan Wang, Zhiqiang Shen, Yaoyu Tang, Lei Bo, Man Wang
{"title":"Mechanism of removal of Sb from printing and dyeing wastewater by a novel titanium-manganese binary oxide.","authors":"Zhiquan Xiang, Yijie Zhang, Zhuowei Shen, Dan Wang, Zhiqiang Shen, Yaoyu Tang, Lei Bo, Man Wang","doi":"10.1016/j.envres.2024.120583","DOIUrl":null,"url":null,"abstract":"<p><p>Antimony (Sb) is a toxic heavy metal that endangers both the environment and human health. In response to the growing need for efficient Sb removal from printing and dyeing wastewater (PDW), this study introduces a novel titanium-manganese binary oxide adsorbent (T2M1BO) synthesized via precipitation. Experimental results show that T2M1BO exhibited higher absorption efficiency for Sb(III) compared to Sb(V), with maximum adsorption capacities recorded at 323.19 mg/g for Sb(III) and 273.65 mg/g for Sb(V) at pH 5. The findings emphasize the synergistic interaction between titanium and manganese oxides, which enhances the adsorption of antimony. Adsorption followed a pseudo-second-order kinetic model, consistent with the Freundlich isotherm model. While Sb(V) adsorption involved surface metal hydroxyl group replacement and inner-sphere complex formation, Sb(III) removal required a more complex approach, incorporating adsorption and oxidation processes. The straightforward synthesis, high efficiency, and recyclability of T2M1BO position it as a cpromising candidate for antimony removal in recyclability wastewater treatment.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"120583"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envres.2024.120583","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Antimony (Sb) is a toxic heavy metal that endangers both the environment and human health. In response to the growing need for efficient Sb removal from printing and dyeing wastewater (PDW), this study introduces a novel titanium-manganese binary oxide adsorbent (T2M1BO) synthesized via precipitation. Experimental results show that T2M1BO exhibited higher absorption efficiency for Sb(III) compared to Sb(V), with maximum adsorption capacities recorded at 323.19 mg/g for Sb(III) and 273.65 mg/g for Sb(V) at pH 5. The findings emphasize the synergistic interaction between titanium and manganese oxides, which enhances the adsorption of antimony. Adsorption followed a pseudo-second-order kinetic model, consistent with the Freundlich isotherm model. While Sb(V) adsorption involved surface metal hydroxyl group replacement and inner-sphere complex formation, Sb(III) removal required a more complex approach, incorporating adsorption and oxidation processes. The straightforward synthesis, high efficiency, and recyclability of T2M1BO position it as a cpromising candidate for antimony removal in recyclability wastewater treatment.
期刊介绍:
The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.