Construction of Fe and g-C3N4 codoped magnetic bamboo charcoal for enhanced catalytic degradation of tetracycline: Mechanism, degradation pathway, and ecological toxicity.
Xuebing Ji, Ziguang Tan, Huan Wang, Silin Yang, Zhengjun Shi, Dawei Wang
{"title":"Construction of Fe and g-C<sub>3</sub>N<sub>4</sub> codoped magnetic bamboo charcoal for enhanced catalytic degradation of tetracycline: Mechanism, degradation pathway, and ecological toxicity.","authors":"Xuebing Ji, Ziguang Tan, Huan Wang, Silin Yang, Zhengjun Shi, Dawei Wang","doi":"10.1016/j.envres.2024.120576","DOIUrl":null,"url":null,"abstract":"<p><p>The well-designed bamboo charcoal (BC) composite Fe-g-C<sub>3</sub>N<sub>4</sub>/BC with multi-active sites of FeO<sub>x</sub>, FeN<sub>x</sub>, and g-C<sub>3</sub>N<sub>4</sub>, was fabricated in-situ by calcining Fe-melamine loaded bamboo charcoal (Fe-Me-BC) under nitrogen atmosphere. The as-synthesized Fe-g-C<sub>3</sub>N<sub>4</sub>/BC(550) exhibited a mesoporous structure with a large specific surface area of 108.23 m<sup>2</sup>/g. The adsorption of tetracycline (TCL) on Fe-g-C<sub>3</sub>N<sub>4</sub>/BC(550) was calculated following the Langmuir isotherm model, and showed a maximum adsorption capacity of 19.92 mg/g. Furthermore, the pseudo-second-order kinetic model showed a good fit for the TCL adsorption process on Fe-g-C<sub>3</sub>N<sub>4</sub>/BC(550). The Fe-g-C<sub>3</sub>N<sub>4</sub>/BC(550)/H<sub>2</sub>O<sub>2</sub> system exhibited excellent photo-Fenton catalytic performance in degrading TCL with a degradation efficiency reaching up to 98.9% within 5 min under visible-light. The effects of initial pH value and coexisting anions on TCL degradation were determined. As narrow band gap semiconductors, g-C<sub>3</sub>N<sub>4</sub>, Fe<sub>3</sub>O<sub>4</sub>, and Fe<sub>2</sub>O<sub>3</sub> in the Fe-g-C<sub>3</sub>N<sub>4</sub>/BC exhibited good visible-light-driven photocatalytic activity. Moreover, photogenerated electrons could further activate H<sub>2</sub>O<sub>2</sub> to produce high concentrations of ∙OH radicals. This outstanding photo-Fenton catalytic performance can be ascribed to the synergistic effect of g-C<sub>3</sub>N<sub>4</sub>/Fe<sub>3</sub>O<sub>4</sub>-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>x</sub>N multi-active sites as well as the excellent adsorption ability and conductivity provided by bamboo charcoal. This work presents a convenient approach for constructing economical catalysts for environmental remediation through g-C<sub>3</sub>N<sub>4</sub> and Fe-N codoped BC.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"120576"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envres.2024.120576","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The well-designed bamboo charcoal (BC) composite Fe-g-C3N4/BC with multi-active sites of FeOx, FeNx, and g-C3N4, was fabricated in-situ by calcining Fe-melamine loaded bamboo charcoal (Fe-Me-BC) under nitrogen atmosphere. The as-synthesized Fe-g-C3N4/BC(550) exhibited a mesoporous structure with a large specific surface area of 108.23 m2/g. The adsorption of tetracycline (TCL) on Fe-g-C3N4/BC(550) was calculated following the Langmuir isotherm model, and showed a maximum adsorption capacity of 19.92 mg/g. Furthermore, the pseudo-second-order kinetic model showed a good fit for the TCL adsorption process on Fe-g-C3N4/BC(550). The Fe-g-C3N4/BC(550)/H2O2 system exhibited excellent photo-Fenton catalytic performance in degrading TCL with a degradation efficiency reaching up to 98.9% within 5 min under visible-light. The effects of initial pH value and coexisting anions on TCL degradation were determined. As narrow band gap semiconductors, g-C3N4, Fe3O4, and Fe2O3 in the Fe-g-C3N4/BC exhibited good visible-light-driven photocatalytic activity. Moreover, photogenerated electrons could further activate H2O2 to produce high concentrations of ∙OH radicals. This outstanding photo-Fenton catalytic performance can be ascribed to the synergistic effect of g-C3N4/Fe3O4-Fe2O3/FexN multi-active sites as well as the excellent adsorption ability and conductivity provided by bamboo charcoal. This work presents a convenient approach for constructing economical catalysts for environmental remediation through g-C3N4 and Fe-N codoped BC.
期刊介绍:
The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.