A novel metal-free perylene-functionalized graphite adsorbent for efficient antibiotic removal from wastewater

IF 5.8 3区 环境科学与生态学 0 ENVIRONMENTAL SCIENCES
Payam Arabkhani, Arash Asfaram, Negar Sadegh
{"title":"A novel metal-free perylene-functionalized graphite adsorbent for efficient antibiotic removal from wastewater","authors":"Payam Arabkhani,&nbsp;Arash Asfaram,&nbsp;Negar Sadegh","doi":"10.1007/s11356-024-35492-z","DOIUrl":null,"url":null,"abstract":"<div><p>Adsorption remains a widely utilized and effective technique for removing chemical contaminants from polluted water, and novel adsorbents are currently in the process of being developed. The presence of antibiotics residues in aqueous effluents is a potential concern due to their potential adverse effects on living organisms. In this work, perylene tetracarboxylic acid-functionalized expanded graphite (PTCA-EG) was synthesized as a metal-free adsorbent and its potential for efficient treatment of contaminated wastewater with cefalexin (CLX) antibiotic was studied. The experimental variables were modeled and optimized using central composite design (CCD) and response surface methodology (RSM) to maximize adsorption efficiency. In this regard, the contact time of 20 min, solution pH of 7.0, adsorbent dosage of 18 mg, and initial CLX concentration of 45 mg L<sup>−1</sup> were found to be the optimum conditions for adsorptive removal of CLX with a maximum efficiency of 99 ± 1.21%. In addition, the adsorption equilibrium data were well analyzed with isotherm, kinetic, and thermodynamic studies. The isotherm results revealed the adsorption process was favorable and took place on the heterogeneous surface. Moreover, the Langmuir maximum adsorption capacity (<i>Q</i><sub>max</sub>) was determined as 220.7 mg g<sup>−1</sup>. Also, thermodynamic parameters revealed the spontaneity and endothermic nature of the adsorption process. The reusability studies demonstrated that the spent PTCA-EG can be easily regenerated through NaOH solution (0.01 mol L<sup>−1</sup>) and reused for six cycles without any significant decrease in its adsorption efficiency. Also, the PTCA-EG showed excellent behavior in adsorptive removal of CLX in real water samples including river water (96.61 ± 1.82%) and hospital effluents (91.91 ± 3.41–93.69 ± 3.06%).</p></div>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":"31 59","pages":"66878 - 66891"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11356-024-35492-z","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Adsorption remains a widely utilized and effective technique for removing chemical contaminants from polluted water, and novel adsorbents are currently in the process of being developed. The presence of antibiotics residues in aqueous effluents is a potential concern due to their potential adverse effects on living organisms. In this work, perylene tetracarboxylic acid-functionalized expanded graphite (PTCA-EG) was synthesized as a metal-free adsorbent and its potential for efficient treatment of contaminated wastewater with cefalexin (CLX) antibiotic was studied. The experimental variables were modeled and optimized using central composite design (CCD) and response surface methodology (RSM) to maximize adsorption efficiency. In this regard, the contact time of 20 min, solution pH of 7.0, adsorbent dosage of 18 mg, and initial CLX concentration of 45 mg L−1 were found to be the optimum conditions for adsorptive removal of CLX with a maximum efficiency of 99 ± 1.21%. In addition, the adsorption equilibrium data were well analyzed with isotherm, kinetic, and thermodynamic studies. The isotherm results revealed the adsorption process was favorable and took place on the heterogeneous surface. Moreover, the Langmuir maximum adsorption capacity (Qmax) was determined as 220.7 mg g−1. Also, thermodynamic parameters revealed the spontaneity and endothermic nature of the adsorption process. The reusability studies demonstrated that the spent PTCA-EG can be easily regenerated through NaOH solution (0.01 mol L−1) and reused for six cycles without any significant decrease in its adsorption efficiency. Also, the PTCA-EG showed excellent behavior in adsorptive removal of CLX in real water samples including river water (96.61 ± 1.82%) and hospital effluents (91.91 ± 3.41–93.69 ± 3.06%).

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
17.20%
发文量
6549
审稿时长
3.8 months
期刊介绍: Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes: - Terrestrial Biology and Ecology - Aquatic Biology and Ecology - Atmospheric Chemistry - Environmental Microbiology/Biobased Energy Sources - Phytoremediation and Ecosystem Restoration - Environmental Analyses and Monitoring - Assessment of Risks and Interactions of Pollutants in the Environment - Conservation Biology and Sustainable Agriculture - Impact of Chemicals/Pollutants on Human and Animal Health It reports from a broad interdisciplinary outlook.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信