Yixiao Chen, Guoqing Li, Yufeng Ge, Su Liu, Jian Weng, Jianjing Lin, Ao Xiong, Hui Zeng, Xinbao Wu, Jun Yang, Fei Yu
{"title":"Repair of Cartilage Defects Using ATDC5 Cells Treated with BBR Loaded in Chitosan Hydrogel.","authors":"Yixiao Chen, Guoqing Li, Yufeng Ge, Su Liu, Jian Weng, Jianjing Lin, Ao Xiong, Hui Zeng, Xinbao Wu, Jun Yang, Fei Yu","doi":"10.1021/acsbiomaterials.4c01645","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we explore the cartilage defect repair mechanism by phosphocreatine-grafted chitosan hydrogels loaded with berberine-treated ATDC5 cells (CSMP@BBR@ATDC5). Under the optimal concentrations of LPS and BBR ideal conditions, ATDC5 cell toxicity and proliferation were detected with AM/PI and EdU staining. Additionally, qPCR and Western blot were employed to detect the expression of the SIRT1/BMP4 signaling pathway and chondrogenic-related factors in ATDC5 cells. Moreover, BBR-treated ATDC5 was seeded into a phosphocreatine-grafted chitosan hydrogel system. Subsequently, the cartilage defect was established in mice. After 4, 8, and 12 weeks, knee specimens were collected to evaluate the repair of cartilage defects. According to our findings, BBR can increase ATDC5 viability by LPS treatment. Likewise, it upregulates the SIRT1/BMP4 signaling pathway expression and chondrogenic-related factors. Another, it was shown by histological observation that the cartilage defect had been repaired more effectively in the CSMP@BBR@ATDC5 group than in the other groups. Finally, the expressions of chondrogenic-related factors and SIRT1/BMP4 signaling pathway were upregulates in CSMP@BBR@ATDC5 than in other groups. <i>In vitro,</i> BBR protects inflammatory ATDC5 cells and maintains the expression of chondrogenic-related factors. Subsequently, we successfully use CSMP@BBR@ATDC 5 to repair knee cartilage defects in mice.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"493-505"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01645","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we explore the cartilage defect repair mechanism by phosphocreatine-grafted chitosan hydrogels loaded with berberine-treated ATDC5 cells (CSMP@BBR@ATDC5). Under the optimal concentrations of LPS and BBR ideal conditions, ATDC5 cell toxicity and proliferation were detected with AM/PI and EdU staining. Additionally, qPCR and Western blot were employed to detect the expression of the SIRT1/BMP4 signaling pathway and chondrogenic-related factors in ATDC5 cells. Moreover, BBR-treated ATDC5 was seeded into a phosphocreatine-grafted chitosan hydrogel system. Subsequently, the cartilage defect was established in mice. After 4, 8, and 12 weeks, knee specimens were collected to evaluate the repair of cartilage defects. According to our findings, BBR can increase ATDC5 viability by LPS treatment. Likewise, it upregulates the SIRT1/BMP4 signaling pathway expression and chondrogenic-related factors. Another, it was shown by histological observation that the cartilage defect had been repaired more effectively in the CSMP@BBR@ATDC5 group than in the other groups. Finally, the expressions of chondrogenic-related factors and SIRT1/BMP4 signaling pathway were upregulates in CSMP@BBR@ATDC5 than in other groups. In vitro, BBR protects inflammatory ATDC5 cells and maintains the expression of chondrogenic-related factors. Subsequently, we successfully use CSMP@BBR@ATDC 5 to repair knee cartilage defects in mice.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture