Restructuring Biologically Assembled Binding Protein-Biopolymer Conjugates toward Advanced Materials.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2024-12-18 Epub Date: 2024-12-09 DOI:10.1021/acsami.4c15941
Deeptee Chandrashekhar Pande, Trung-Hieu Vu, Yaoying Lu, Frank Sainsbury, Van Thanh Dau, Bernd H A Rehm
{"title":"Restructuring Biologically Assembled Binding Protein-Biopolymer Conjugates toward Advanced Materials.","authors":"Deeptee Chandrashekhar Pande, Trung-Hieu Vu, Yaoying Lu, Frank Sainsbury, Van Thanh Dau, Bernd H A Rehm","doi":"10.1021/acsami.4c15941","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial cell factories have been successfully engineered to efficiently assemble spherical polyhydroxybutyrate inclusions coated with functional proteins of interest. In these submicrometer-sized core-shell assemblies, proteins are bioconjugated to the polymer core, enabling bioengineering for uses as bioseparation resins, enzyme carriers, diagnostic reagents, and particulate vaccines. Here, we explore whether these functional protein-polymer assemblies could be restructured via dissolution and subsequent precipitation while retaining the functionality of the conjugated protein. Polymer core-protein shell assemblies were completely dissolved in chloroform. Subsequent reconstitution into different formats such as hollow spheres, fibers, and films was achieved. Different proteins such as the green fluorescent protein or IgG binding domains GB1 or Z derived from protein G or protein A, respectively, were implemented to monitor the retention of protein function upon generation of reformatted materials. Materials were characterized and the retention of protein functionality was studied by assessing the fluorescence or IgG binding capacity. Since the Z domain protein functionality is retained, it suggests that protein refolding properties are critical parameters for restructuring these functional materials. This study shows that bioengineered biologically assembled protein-coated biopolymer particles can be completely dissolved and reformed into fibers, films, and hollow spheres retaining the original protein function.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"68983-68995"},"PeriodicalIF":8.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c15941","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial cell factories have been successfully engineered to efficiently assemble spherical polyhydroxybutyrate inclusions coated with functional proteins of interest. In these submicrometer-sized core-shell assemblies, proteins are bioconjugated to the polymer core, enabling bioengineering for uses as bioseparation resins, enzyme carriers, diagnostic reagents, and particulate vaccines. Here, we explore whether these functional protein-polymer assemblies could be restructured via dissolution and subsequent precipitation while retaining the functionality of the conjugated protein. Polymer core-protein shell assemblies were completely dissolved in chloroform. Subsequent reconstitution into different formats such as hollow spheres, fibers, and films was achieved. Different proteins such as the green fluorescent protein or IgG binding domains GB1 or Z derived from protein G or protein A, respectively, were implemented to monitor the retention of protein function upon generation of reformatted materials. Materials were characterized and the retention of protein functionality was studied by assessing the fluorescence or IgG binding capacity. Since the Z domain protein functionality is retained, it suggests that protein refolding properties are critical parameters for restructuring these functional materials. This study shows that bioengineered biologically assembled protein-coated biopolymer particles can be completely dissolved and reformed into fibers, films, and hollow spheres retaining the original protein function.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信