{"title":"Role of versican in extracellular matrix formation: analysis in 3D culture.","authors":"Nushrat Jahan, Shamima Islam, Karnan Sivasundaram, Akinobu Ota, Munekazu Naito, Junpei Kuroda, Hideto Watanabe","doi":"10.1152/ajpcell.00495.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional cell culture creates an environment that allows cells to grow and interact with the surrounding extracellular framework. Versican plays a pivotal role in forming the provisional matrix, but it is still unclear how this proteoglycan affects the formation of the extracellular matrix. Here, we established a three-dimensional culture system using fibrin gel, which enables a long-term culture up to a month. With this system, we characterized fibroblasts obtained from the newborn knock-in homozygotes, termed R/R, expressing ADAMTS-resistant versican and wild-type mice. R/R fibroblasts showed higher levels of versican deposition than wild-type, demonstrating that the initial ADAMTS-cleavage site is involved in versican turnover. These fibroblasts exhibited faster proliferation and myofibroblastic differentiation, concomitant with higher levels of TGFβ-signaling. R/R fibroblast culture had higher deposition levels of fibronectin, type I and V collagens, and fibrillin-1, especially at the late stages of culture. These results suggest that versican expressed by dermal fibroblasts facilitates the extracellular matrix formation, at least by affecting fibroblast behavior.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00495.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional cell culture creates an environment that allows cells to grow and interact with the surrounding extracellular framework. Versican plays a pivotal role in forming the provisional matrix, but it is still unclear how this proteoglycan affects the formation of the extracellular matrix. Here, we established a three-dimensional culture system using fibrin gel, which enables a long-term culture up to a month. With this system, we characterized fibroblasts obtained from the newborn knock-in homozygotes, termed R/R, expressing ADAMTS-resistant versican and wild-type mice. R/R fibroblasts showed higher levels of versican deposition than wild-type, demonstrating that the initial ADAMTS-cleavage site is involved in versican turnover. These fibroblasts exhibited faster proliferation and myofibroblastic differentiation, concomitant with higher levels of TGFβ-signaling. R/R fibroblast culture had higher deposition levels of fibronectin, type I and V collagens, and fibrillin-1, especially at the late stages of culture. These results suggest that versican expressed by dermal fibroblasts facilitates the extracellular matrix formation, at least by affecting fibroblast behavior.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.