A novel platinum(II) complex with a berberine derivative as a potential antitumor agent targeting G-quadruplex DNA.

IF 2.9 3区 化学 Q1 CHEMISTRY, ORGANIC
Shu-Lin Zhang, Haimei Fu, Yingxia Ma, Qifu Lin, Yanli Xu, Qiyuan Yang, Peng He, Zuzhuang Wei
{"title":"A novel platinum(II) complex with a berberine derivative as a potential antitumor agent targeting G-quadruplex DNA.","authors":"Shu-Lin Zhang, Haimei Fu, Yingxia Ma, Qifu Lin, Yanli Xu, Qiyuan Yang, Peng He, Zuzhuang Wei","doi":"10.1039/d4ob01705f","DOIUrl":null,"url":null,"abstract":"<p><p>G-quadruplexes are considered attractive targets for various human diseases, including cancer therapy, owing to their potential therapeutic applications. Understanding the interaction between ligands and G-quadruplexes is crucial for the development of novel anticancer agents. In this study, we designed a novel platinum(II) complex (Pt1), with a berberine derivative (L) serving as a bioactive ligand. The structures of both ligand L and Pt1 were fully characterized using NMR, ESI-MS, and IR. UV-visible spectroscopy, fluorescence spectroscopy, circular dichroism spectroscopy, electrostatic surface potential, frontier molecular orbital and molecular docking experiments were employed to investigate the interaction between Pt1 and G-quadruplexes. The results suggested that Pt1 interacted favorably with G-quadruplex DNA over double-stranded DNA (DS26). Among them, Pt1 interacts with the bcl-2 G-quadruplex with a binding affinity of 17.9 μM and did not induce conformational changes in the topology of the bcl-2 G-quadruplex. Moreover, we evaluated its antiproliferative activities on tumor cells (HeLa, A549 and T24), which demonstrated that Pt1 inhibited tumor cell proliferation and induced HeLa cell apoptosis. Overall, this study offers novel insights for the development of promising platinum(II) antitumor agents based on G-quadruplex structures.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ob01705f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

G-quadruplexes are considered attractive targets for various human diseases, including cancer therapy, owing to their potential therapeutic applications. Understanding the interaction between ligands and G-quadruplexes is crucial for the development of novel anticancer agents. In this study, we designed a novel platinum(II) complex (Pt1), with a berberine derivative (L) serving as a bioactive ligand. The structures of both ligand L and Pt1 were fully characterized using NMR, ESI-MS, and IR. UV-visible spectroscopy, fluorescence spectroscopy, circular dichroism spectroscopy, electrostatic surface potential, frontier molecular orbital and molecular docking experiments were employed to investigate the interaction between Pt1 and G-quadruplexes. The results suggested that Pt1 interacted favorably with G-quadruplex DNA over double-stranded DNA (DS26). Among them, Pt1 interacts with the bcl-2 G-quadruplex with a binding affinity of 17.9 μM and did not induce conformational changes in the topology of the bcl-2 G-quadruplex. Moreover, we evaluated its antiproliferative activities on tumor cells (HeLa, A549 and T24), which demonstrated that Pt1 inhibited tumor cell proliferation and induced HeLa cell apoptosis. Overall, this study offers novel insights for the development of promising platinum(II) antitumor agents based on G-quadruplex structures.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Organic & Biomolecular Chemistry
Organic & Biomolecular Chemistry 化学-有机化学
CiteScore
5.50
自引率
9.40%
发文量
1056
审稿时长
1.3 months
期刊介绍: The international home of synthetic, physical and biomolecular organic chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信