Thermally responsive spatially programmable soft actuators with multiple response states enabled by Grayscale UV light processing.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yizong Li, Sooyeon Noh Coodley, Si Chen, Penghao Dong, Su Li, Shanshan Yao
{"title":"Thermally responsive spatially programmable soft actuators with multiple response states enabled by Grayscale UV light processing.","authors":"Yizong Li, Sooyeon Noh Coodley, Si Chen, Penghao Dong, Su Li, Shanshan Yao","doi":"10.1039/d4mh01209g","DOIUrl":null,"url":null,"abstract":"<p><p>Soft actuators hold great promise for applications in biomimetic robots, artificial muscles, and drug delivery systems due to their adaptability in diverse environments. A critical aspect of designing thermally responsive soft actuators is to achieve spatially programmable actuation under a global thermal stimulus. Different local actuation behaviors can be encoded in one actuator to enable complex morphing structures for different tasks. However, it is challenging to achieve programmability beyond one or binary states. This work introduces a new grayscale ultraviolet (UV) light processing method to fabricate soft actuators with spatially tunable Young's modulus, enabling multiple programmable states in one actuator. Together with a liquid crystal elastomer actuation layer and a photothermal heating layer, the LCE programming layer with spatially programmable moduli allows different regions of the soft actuator to bend to controllable extents under a global thermal stimulus. Various shape morphing patterns can be encoded using UV photomasks with spatially controlled grayscales. Additionally, caterpillar-inspired robots capable of bi-directional crawling and octopus-arm-inspired structures for object manipulation are demonstrated. This work represents advancements in the programmability of thermally responsive soft actuators, laying the foundation for their applications in advanced soft robotic systems.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01209g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Soft actuators hold great promise for applications in biomimetic robots, artificial muscles, and drug delivery systems due to their adaptability in diverse environments. A critical aspect of designing thermally responsive soft actuators is to achieve spatially programmable actuation under a global thermal stimulus. Different local actuation behaviors can be encoded in one actuator to enable complex morphing structures for different tasks. However, it is challenging to achieve programmability beyond one or binary states. This work introduces a new grayscale ultraviolet (UV) light processing method to fabricate soft actuators with spatially tunable Young's modulus, enabling multiple programmable states in one actuator. Together with a liquid crystal elastomer actuation layer and a photothermal heating layer, the LCE programming layer with spatially programmable moduli allows different regions of the soft actuator to bend to controllable extents under a global thermal stimulus. Various shape morphing patterns can be encoded using UV photomasks with spatially controlled grayscales. Additionally, caterpillar-inspired robots capable of bi-directional crawling and octopus-arm-inspired structures for object manipulation are demonstrated. This work represents advancements in the programmability of thermally responsive soft actuators, laying the foundation for their applications in advanced soft robotic systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信